127 research outputs found

    Isolation and Culture of Larval Cells from C. elegans

    Get PDF
    Cell culture is an essential tool to study cell function. In C. elegans the ability to isolate and culture cells has been limited to embryonically derived cells. However, cells or blastomeres isolated from mixed stage embryos terminally differentiate within 24 hours of culture, thus precluding post-embryonic stage cell culture. We have developed an efficient and technically simple method for large-scale isolation and primary culture of larval-stage cells. We have optimized the treatment to maximize cell number and minimize cell death for each of the four larval stages. We obtained up to 7.8×104 cells per microliter of packed larvae, and up to 97% of adherent cells isolated by this method were viable for at least 16 hours. Cultured larval cells showed stage-specific increases in both cell size and multinuclearity and expressed lineage- and cell type-specific reporters. The majority (81%) of larval cells isolated by our method were muscle cells that exhibited stage-specific phenotypes. L1 muscle cells developed 1 to 2 wide cytoplasmic processes, while L4 muscle cells developed 4 to 14 processes of various thicknesses. L4 muscle cells developed bands of myosin heavy chain A thick filaments at the cell center and spontaneously contracted ex vivo. Neurons constituted less than 10% of the isolated cells and the majority of neurons developed one or more long, microtubule-rich protrusions that terminated in actin-rich growth cones. In addition to cells such as muscle and neuron that are high abundance in vivo, we were also able to isolate M-lineage cells that constitute less than 0.2% of cells in vivo. Our novel method of cell isolation extends C. elegans cell culture to larval developmental stages, and allows use of the wealth of cell culture tools, such as cell sorting, electrophysiology, co-culture, and high-resolution imaging of subcellular dynamics, in investigation of post-embryonic development and physiology

    A randomised controlled trial investigating the effect of nutritional supplementation on visual function in normal, and age-related macular disease affected eyes: design and methodology [ISRCTN78467674]

    Get PDF
    BACKGROUND: Age-related macular disease is the leading cause of blind registration in the developed world. One aetiological hypothesis involves oxidation, and the intrinsic vulnerability of the retina to damage via this process. This has prompted interest in the role of antioxidants, particularly the carotenoids lutein and zeaxanthin, in the prevention and treatment of this eye disease. METHODS: The aim of this randomised controlled trial is to determine the effect of a nutritional supplement containing lutein, vitamins A, C and E, zinc, and copper on measures of visual function in people with and without age-related macular disease. Outcome measures are distance and near visual acuity, contrast sensitivity, colour vision, macular visual field, glare recovery, and fundus photography. Randomisation is achieved via a random number generator, and masking achieved by third party coding of the active and placebo containers. Data collection will take place at nine and 18 months, and statistical analysis will employ Student's t test. DISCUSSION: A paucity of treatment modalities for age-related macular disease has prompted research into the development of prevention strategies. A positive effect on normals may be indicative of a role of nutritional supplementation in preventing or delaying onset of the condition. An observed benefit in the age-related macular disease group may indicate a potential role of supplementation in prevention of progression, or even a degree reversal of the visual effects caused by this condition

    Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system

    Get PDF
    A novel strategy for profiling Caenorhabditis elegans cells identifies transcripts highly enriched in either the embryonic or larval C. elegans nervous system, including 19 conserved transcripts of unknown function that are also expressed in the mammalian brain

    Biochemical comparison of fast- and slow-contracting squid muscle

    No full text
    The myofilament protein compositions of muscle fibres from the transverse muscle mass of the tentacles and the transverse muscle mass of the arms of the loliginid squid Sepioteuthis lessoniana were compared. These two muscle masses are distinct types, differing in their ultrastructural and behavioural properties. The transverse muscle of the tentacles consists of specialized muscle fibres that exhibit cross-striation and unusually short sarcomeres and thick filaments. The transverse muscle of the arms consists of obliquely striated muscle fibres that are typical of cephalopod skeletal muscle in general. The specialization of the tentacle muscle results in a high shortening speed and reflects its role in creating rapid elongation of the tentacles during prey capture. Comparison of samples of myofilament preparations of the two muscle fibre types using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and peptide mapping of myosin heavy chains from the two muscle fibre types, however, showed little evidence of differences in contractile protein isoforms. Thus, specialization for high shortening speed appears to have occurred primarily through changes in the dimensions and arrangement of the myofilament lattice, rather than through changes in biochemistry. The thick filament core protein paramyosin was tentatively identified in the squid muscle fibres. This protein was less abundant in the short thick filament cross-striated tentacle muscle cells than in the obliquely striated arm cells

    Differences in the transient response of fast and slow skeletal muscle fibers. Correlations between complex modulus and myosin light chains.

    Get PDF
    Sinusoidal analysis of the mechanochemical properties of skinned muscle fibers under conditions of maximal activation was applied to fibers from several rabbit skeletal muscles (psoas, tibialis anterior, extensor digitorum longus, diaphragm, soleus, semitendinosus). This investigation distinguished between two general classes of fibers, which on the basis of their myosin light chain complements could be classified as fast and slow. In fast fibers (e.g., psoas) we identified the presence of at least three exponential processes (A), (B), (C) of comparable magnitudes. In slow fibers (e.g., soleus) we identified the presence of at least four exponential processes (A)-(D) of very different magnitudes; magnitudes of processes (A) and (B) are very small compared with those of (C) and (D). The apparent rate constants are 8-29-fold slower in slow fibers. Because our sinusoidal characterization takes less than or equal to 22 s and does not involve chemical denaturation or other means of disruption of the myofilament lattice, it allows the different physiological classes of fibers to be characterized and then studied further by other techniques. The perfect correlation between physiological and molecular properties as assayed by gel electrophoresis after sinusoidal analysis demonstrates this and justifies its use in distinguishing between fiber types

    Troponin C modulates the activation of thin filaments by rigor cross-bridges.

    No full text
    Extraction of troponin C (TnC) from skinned muscle fibers reduces maximum Ca2+ and rigor cross-bridge (RXB)-activated tensions and reduces cooperativity between neighboring regulatory units (one troponin-tropomyosin complex and the seven associated actins) of thin filaments. This suggests that TnC has a determining role in RXB, as well as in Ca(2+)-dependent activation processes. To investigate this possibility further, we replaced fast TnC (fTnC) of rabbit psoas fibers with either CaM[3,4TnC] or cardiac TnC (cTnC) and compared the effects of these substitutions on Ca2+ and RXB activation of tension. CaM[3,4TnC] substitution has the same effect on Ca(2+)- and RXB-activated tensions; they are reduced 50%, and cooperativity between regulatory units is reduced 40%. cTnC substitution also reduces the maximum Ca(2+)-activated tension and cooperativity. But with RXB activation the effects on tension and cooperativity are opposite; cTnC substitution potentiates tension but reduces cooperativity. We considered whether tension potentiation could be explained by increased activation by cycling cross-bridges (CXBs), but the concerted transition formalism predicts fibers will fail to relax in high substrate and high pCa when CXBs are activator ligands. It predicts resting tension, which is not observed in either control or cTnC-substituted fibers. Rather, it appears that cTnC facilitates RXB activation of fast fibers more effectively than fTnC. The order of RXB-activated tension facilitation is cTnC > fTnC > CaM[3,4TnC] > empty TnC-binding sites. Comparison of the structures of fTnC, CaM[3,4TnC], and cTnC indicates that the critical region for this property lies in the central helix or N-terminal domain, including EF hand motifs 1 and 2

    Renaturation of skeletal muscle tropomyosin: implications for in vivo assembly.

    No full text
    • …
    corecore