111 research outputs found

    Angle-resolved photoemission study of untwinned PrBa2_2Cu3_3O7_7: undoped CuO2_2 plane and doped CuO3_3 chain

    Full text link
    We have performed an angle-resolved photoemission study on untwinned PrBa2_2Cu3_3O7_7, which has low resistivity but does not show superconductivity. We have observed a dispersive feature with a band maximum around (π\pi/2,π\pi/2), indicating that this band is derived from the undoped CuO2_2 plane. We have observed another dispersive band exhibiting one-dimensional character, which we attribute to signals from the doped CuO3_3 chain. The overall band dispersion of the one-dimensional band agrees with the prediction of tJt-J model calculation with parameters relevant to cuprates except that the intensity near the Fermi level is considerably suppressed in the experiment.Comment: 6 pages, 10 figure

    Quasiparticle thermal conductivity in the vortex state of high-Tc_c cuprates

    Get PDF
    We present the results of a microscopic calculation of the longitudinal thermal conductivity, κ\kappa, of a d-wave superconductor in the mixed state. Our results show an increase in the thermal conductivity with the applied field at low temperatures, and a decrease followed by a nearly field independent κ(H)\kappa(H) at higher temperatures, in qualitative agreement with the experimental results. We discuss the relationship between the slope of the superconducting gap and the plateau in κ(H)\kappa(H).Comment: 4 pages, 3 figures, very minor changes to text, published versio

    High real-space resolution measurement of the local structure of Ga_1-xIn_xAs using x-ray diffraction

    Full text link
    High real-space resolution atomic pair distribution functions (PDF)s from the alloy series Ga_1-xIn_xAs have been obtained using high-energy x-ray diffraction. The first peak in the PDF is resolved as a doublet due to the presence of two nearest neighbor bond lengths, Ga-As and In-As, as previously observed using XAFS. The widths of nearest, and higher, neighbor pairs are analyzed by separating the strain broadening from the thermal motion. The strain broadening is five times larger for distant atomic neighbors as compared to nearest neighbors. The results are in agreement with model calculations.Comment: 4 pages, 5 figure

    Direct Observation and Anisotropy of the Contribution of Gap nodes in the Low Temperature Specific Heat of YBa_2Cu_3O_7

    Full text link
    The specific heat due to line nodes in the superconducting gap of YBa2Cu3O7 has been obscured up to now by magnetic terms of extrinsic origin, even for high quality crystals. We report the specific heat of a new single crystal grown in a non-corrosive BaZrO3 crucible, for which paramagnetic terms are reduced to less than one spin-1/2 center for 20'000 Cu atoms. The contribution of line nodes shows up directly in the difference C(B,T) - C(0,T) at fixed temperatures (T < 5 K) as a function of the magnetic field parallel to the c-axis (B<=14 T). These data illustrate the smooth crossover from C propotional to T^2 at low fields to C propotional to TB^1/2 at high fields, and provide new values for gap parameters which are quantitatively consistent with tunneling spectroscopy and thermal conductivity in the framework of dx^2-y^2 pairing symmetry. Data for B along the nodal and antinodal directions in the ab-plane are also provided. The in-plane anisotropy predicted in the clean limit is not observed.Comment: 29 pages(using Revtex style), 14 postscript figures, submitted to Phys. Rev. B Content of the file changed after replacin

    Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates

    Full text link
    We propose a theoretical description of the superconducting state of under- to overdoped cuprates, based on the short coherence length of these materials and the associated strong pairing fluctuations. The calculated TcT_c and the zero temperature excitation gap Δ(0)\Delta(0), as a function of hole concentration xx, are in semi-quantitative agreement with experiment. Although the ratio Tc/Δ(0)T_c/\Delta(0) has a strong xx dependence, different from the universal BCS value, and Δ(T)\Delta(T) deviates significantly from the BCS prediction, we obtain, quite remarkably, quasi-universal behavior, for the normalized superfluid density ρs(T)/ρs(0)\rho_s(T)/\rho_s(0) and the Josephson critical current Ic(T)/Ic(0)I_c(T)/I_c(0), as a function of T/TcT/T_c. While experiments on ρs(T)\rho_s(T) are consistent with these results, future measurements on Ic(T)I_c(T) are needed to test this prediction.Comment: 4 pages, 3 figures, REVTeX, submitted to Phys. Rev. Let

    Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta

    Get PDF
    The temperature dependence of the c-axis optical conductivity \sigma(\omega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at \omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi

    Superconducting Gap and Strong In-Plane Anisotropy in Untwinned YBa2Cu3O7-d

    Full text link
    With significantly improved sample quality and instrumental resolution, we clearly identify in the (pi,0) ARPES spectra from YBa2Cu3O6.993, in the superconducting state, the long-sought `peak-dip-hump' structure. This advance allows us to investigate the large a-b anisotropy of the in-plane electronic structure including, in particular, a 50% difference in the magnitude of the superconducting gap that scales with the energy position of the hump feature. This anisotropy, likely induced by the presence of the CuO chains, raises serious questions about attempts to quantitatively explain the YBa2Cu3O7-d data from various experiments using models based on a perfectly square lattice.Comment: Phys. Rev. Lett., in press. Revtex, 4 pages, 4 postscript figures embedded in the tex

    Anomalous superconducting state gap size versus Tc behavior in underdoped Bi_2Sr_2Ca_1-xDy_xCu_2O_8+d

    Full text link
    We report angle-resolved photoemission spectroscopy measurements of the excitation gap in underdoped superconducting thin films of Bi_2Sr_2Ca_{1-x}Dy_xCu_2O_{8+d}. As Tc is reduced by a factor of 2 by underdoping, the superconducting state gap \Delta does not fall proportionally, but instead stays constant or increases slightly, in violation of the BCS mean-field theory result. The different doping dependences of \Delta and kT_c indicate that they represent different energy scales. The measurements also show that \Delta is highly anisotropic and consistent with a d_{x^2-y^2} order parameter, as in previous studies of samples with higher dopings. However, in these underdoped samples, the anisotropic gap persists well above T_c. The existence of a normal state gap is related to the failure of \Delta to scale with T_c in theoretical models that predict pairing without phase coherence above T_c.Comment: 10 pages, 4 postscript figures, revtex forma

    Probing Mechanical Properties of Graphene with Raman Spectroscopy

    Get PDF
    The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.Comment: To appear in the Journal of Materials Scienc

    Superconductivity from Undressing

    Full text link
    Photoemission experiments in high TcT_c cuprates indicate that quasiparticles are heavily 'dressed' in the normal state, particularly in the low doping regime. Furthermore these experiments show that a gradual undressing occurs both in the normal state as the system is doped and the carrier concentration increases, as well as at fixed carrier concentration as the temperature is lowered and the system becomes superconducting. A similar picture can be inferred from optical experiments. It is argued that these experiments can be simply understood with the single assumption that the quasiparticle dressing is a function of the local carrier concentration. Microscopic Hamiltonians describing this physics are discussed. The undressing process manifests itself in both the one-particle and two-particle Green's functions, hence leads to observable consequences in photoemission and optical experiments respectively. An essential consequence of this phenomenology is that the microscopic Hamiltonians describing it break electron-hole symmetry: these Hamiltonians predict that superconductivity will only occur for carriers with hole-like character, as proposed in the theory of hole superconductivity
    corecore