281 research outputs found

    Angle-resolved photoemission study of untwinned PrBa2_2Cu3_3O7_7: undoped CuO2_2 plane and doped CuO3_3 chain

    Full text link
    We have performed an angle-resolved photoemission study on untwinned PrBa2_2Cu3_3O7_7, which has low resistivity but does not show superconductivity. We have observed a dispersive feature with a band maximum around (π\pi/2,π\pi/2), indicating that this band is derived from the undoped CuO2_2 plane. We have observed another dispersive band exhibiting one-dimensional character, which we attribute to signals from the doped CuO3_3 chain. The overall band dispersion of the one-dimensional band agrees with the prediction of tJt-J model calculation with parameters relevant to cuprates except that the intensity near the Fermi level is considerably suppressed in the experiment.Comment: 6 pages, 10 figure

    Interplane magnetic coupling effects in the multilattice compound Y_2Ba_4Cu_7O_{15}

    Full text link
    We investigate the interplane magnetic coupling of the multilattice compound Y_2Ba_4Cu_7O_{15} by means of a bilayer Hubbard model with inequivalent planes. We evaluate the spin response, effective interaction and the intra- and interplane spin-spin relaxation times within the fluctuation exchange approximation. We show that strong in-plane antiferromagnetic fluctuations are responsible for a magnetic coupling between the planes, which in turns leads to a tendency of the fluctuation in the two planes to equalize. This equalization effect grows whit increasing in-plane antiferromagnetic fluctuations, i. e., with decreasing temperature and decreasing doping, while it is completely absent when the in-layer correlation length becomes of the order of one lattice spacing. Our results provide a good qualitative description of NMR and NQR experiments in Y_2Ba_4Cu_7O_{15}.Comment: Final version, to appear. in Phys. Rev. B (Rapid Communications), sched. Jan. 9

    In Situ Investigations of Simultaneous Two-Layer Slot Die Coating of Component-Graded Anodes for Improved High-Energy Li-Ion Batteries

    Get PDF
    The use of thicker electrodes can contribute to a reduction in cell costs. However, the properties of the electrode must be kept in view to be able to meet the performance requirements. Herein, the possibility of simultaneous multilayer slot die coating is investigated to improve the electrode properties of medium- and high-capacity anodes. The stable coating window of the two-layer slot die coating process is investigated to produce property-graded multilayer electrodes. Electrodes with different styrene–butadiene rubber (SBR) gradients are investigated with regard to adhesive force and electrochemical performance. An increase in the adhesive force of up to 43.5% and an increase in the discharge capacity is observed

    Quasiparticle-quasiparticle Scattering in High Tc Superconductors

    Full text link
    The quasiparticle lifetime and the related transport relaxation times are the fundamental quantities which must be known in order to obtain a description of the transport properties of the high T_c superconductors. Studies of these quantities have been undertaken previously for the d-wave, high T_c superconductors for the case of temperature-independent elastic impurity scattering. However, much less is known about the temperature-dependent inelastic scattering. Here we give a detailed description of the characteristics of the temperature-dependent quasiparticle-quasiparticle scattering in d-wave superconductors, and find that this process gives a natural explanation of the rapid variation with temperature of the electrical transport relaxation rate.Comment: 4 page

    Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta

    Get PDF
    The temperature dependence of the c-axis optical conductivity \sigma(\omega) of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far- (FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral weight from the FIR not only to the condensate at \omega = 0, but also to a new peak in the MIR. This peak is naturally explained as a transverse out-of-phase bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal structure into account. With decreasing doping the plasmon shifts to lower frequencies and can be identified with the surprising and so far not understood FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi

    Magnetic Coherence as a Universal Feature of Cuprate Superconductors

    Full text link
    Recent inelastic neutron scattering (INS) experiments on La2x_{2-x}Srx_xCuO4_4 have established the existence of a {\it magnetic coherence effect}, i.e., strong frequency and momentum dependent changes of the spin susceptibility, χ\chi'', in the superconducting phase. We show, using the spin-fermion model for incommensurate antiferromagnetic spin fluctuations, that the magnetic coherence effect establishes the ability of INS experiments to probe the electronic spectrum of the cuprates, in that the effect arises from the interplay of an incommensurate magnetic response, the form of the underlying Fermi surface, and the opening of the d-wave gap in the fermionic spectrum. In particular, we find that the magnetic coherence effect observed in INS experiments on La2x_{2-x}Srx_xCuO4_4 requires that the Fermi surface be closed around (π,π)(\pi,\pi) up to optimal doping. We present several predictions for the form of the magnetic coherence effect in YBa2_2Cu3_3O6+x_{6+x} in which an incommensurate magnetic response has been observed in the superconducting state.Comment: 9 pages, 12 figures; extended version of Phys. Rev B, R6483 (2000

    Discrete-Lattice Model for Surface Bound States and Tunneling in d-Wave Superconductors

    Full text link
    Surface bound states in a discrete-lattice model of a dx2y2d_{x^2 - y^2} cuprate superconductor are shown to be, in general, coherent superpositions of an incoming excitation and more than one outgoing excitation, and a simple graphical construction based on a surface Brillouin zone is developed to describe their nature. In addition, a momentum-dependent lifetime contribution to the width of these bound states as observed in tunneling experiments is derived and elucidated in physical terms.Comment: 4 pages, 1 figure, revte

    Pairing Fluctuation Theory of Superconducting Properties in Underdoped to Overdoped Cuprates

    Full text link
    We propose a theoretical description of the superconducting state of under- to overdoped cuprates, based on the short coherence length of these materials and the associated strong pairing fluctuations. The calculated TcT_c and the zero temperature excitation gap Δ(0)\Delta(0), as a function of hole concentration xx, are in semi-quantitative agreement with experiment. Although the ratio Tc/Δ(0)T_c/\Delta(0) has a strong xx dependence, different from the universal BCS value, and Δ(T)\Delta(T) deviates significantly from the BCS prediction, we obtain, quite remarkably, quasi-universal behavior, for the normalized superfluid density ρs(T)/ρs(0)\rho_s(T)/\rho_s(0) and the Josephson critical current Ic(T)/Ic(0)I_c(T)/I_c(0), as a function of T/TcT/T_c. While experiments on ρs(T)\rho_s(T) are consistent with these results, future measurements on Ic(T)I_c(T) are needed to test this prediction.Comment: 4 pages, 3 figures, REVTeX, submitted to Phys. Rev. Let

    Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets

    Get PDF
    There is no single reference dataset of long-term global upper-air temperature observations, although several groups have developed datasets from radiosonde and satellite observations for climate-monitoring purposes. The existence of multiple data products allows for exploration of the uncertainty in signals of climate variations and change. This paper examines eight upper-air temperature datasets and quantifies the magnitude and uncertainty of various climate signals, including stratospheric quasi-biennial oscillation (QBO) and tropospheric ENSO signals, stratospheric warming following three major volcanic eruptions, the abrupt tropospheric warming of 1976–77, and multidecadal temperature trends. Uncertainty estimates are based both on the spread of signal estimates from the different observational datasets and on the inherent statistical uncertainties of the signal in any individual dataset. The large spread among trend estimates suggests that using multiple datasets to characterize large-scale upperair temperature trends gives a more complete characterization of their uncertainty than reliance on a single dataset. For other climate signals, there is value in using more than one dataset, because signal strengths vary. However, the purely statistical uncertainty of the signal in individual datasets is large enough to effectively encompass the spread among datasets. This result supports the notion of an 11th climate-monitoring principle, augmenting the 10 principles that have now been generally accepted (although not generally implemented) by the climate community. This 11th principle calls for monitoring key climate variables with multiple, independent observing systems for measuring the variable, and multiple, independent groups analyzing the data
    corecore