94 research outputs found
Genetic Polymorphisms of CYP2E1, GSTP1, NQO1 and MPO and the Risk of Nasopharyngeal Carcinoma in a Han Chinese Population of Southern China
<p>Abstract</p> <p>Background</p> <p>Southern China is a major area for endemic nasopharyngeal carcinoma (NPC). Genetic factors as well as environmental factors play a role in development of NPC. To investigate the roles of previously described carcinogen metabolism gene variants for NPC susceptibility in a Han Chinese population, we conducted a case-control study in two independent study population groups afflicted with NPC in Guangdong and Guangxi Provinces of southern China.</p> <p>Methods</p> <p>Five single nucleotide polymorphisms (SNPs) of <it>CYP2E1</it>-rs2031920, <it>CYP2E1</it>-rs6413432, <it>GSTP1</it>-rs947894, <it>MPO</it>-rs2333227 and <it>NQO1</it>-rs1800566 were genotyped by PCR-based RFLP, sequencing and TaqMan assay in 358 NPC cases and 629 controls (phase I cohort). Logistic regression analysis was used to estimate odds ratios (OR) and 95% confidence intervals (CI). To confirm our results, sixteen tag SNPs for <it>GSTP1</it>, <it>MPO</it>, <it>NQO1 </it>(which 100% covered these genes), and 4 functional SNPs of <it>CYP2E1 </it>were genotyped in another cohort of 213 NPC cases and 230 controls (phase II cohort).</p> <p>Results</p> <p>No significant associations in NPC risk were observed for the five polymorphisms tested in the phase I cohort. In an additional stratified analysis for phase I, there was no significant association between cases and controls in NPC high risk population (EBV/IgA/VCA positive population). Analysis of 14 tagging SNPs within the same genes in an independent phase II cohort were in agreement with no SNPs significantly associated with NPC.</p> <p>Conclusions</p> <p>Our results suggest that polymorphism of <it>CYP2E1</it>, <it>GSTP1</it>, <it>MPO </it>and <it>NQO1 </it>genes does not contribute to overall NPC risk in a Han Chinese in southern China.</p
Artificial intelligence in cancer imaging: Clinical challenges and applications
Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care
Chronic Obstructive Pulmonary Disease and Altered Risk of Lung Cancer in a Population-Based Case-Control Study
BACKGROUND: Chronic obstructive pulmonary disease (COPD) has been consistently associated with increased risk of lung cancer. However, previous studies have had limited ability to determine whether the association is due to smoking. METHODOLOGY/PRINCIPAL FINDINGS: The Environment And Genetics in Lung cancer Etiology (EAGLE) population-based case-control study recruited 2100 cases and 2120 controls, of whom 1934 cases and 2108 controls reported about diagnosis of chronic bronchitis, emphysema, COPD (chronic bronchitis and/or emphysema), or asthma more than 1 year before enrollment. We estimated odds ratios (OR) and 95% confidence intervals (CI) using logistic regression. After adjustment for smoking, other previous lung diseases, and study design variables, lung cancer risk was elevated among individuals with a history of chronic bronchitis (OR = 2.0, 95% CI = 1.5-2.5), emphysema (OR = 1.9, 95% CI = 1.4-2.8), or COPD (OR = 2.5, 95% CI = 2.0-3.1). Among current smokers, association between chronic bronchitis and lung cancer was strongest among lighter smokers. Asthma was associated with a decreased risk of lung cancer in males (OR = 0.48, 95% CI = 0.30-0.78). CONCLUSIONS/SIGNIFICANCE: These results suggest that the associations of personal history of chronic bronchitis, emphysema, and COPD with increased risk of lung cancer are not entirely due to smoking. Inflammatory processes may both contribute to COPD and be important for lung carcinogenesis
XPD codon 312 and 751 polymorphisms, and AFB1 exposure, and hepatocellular carcinoma risk
<p>Abstract</p> <p>Background</p> <p>Genetic polymorphisms in DNA repair genes may influence individual variation in DNA repair capacity, which may be associated with risk of hepatocellular carcinoma (HCC) related to the exposure of aflatoxin B1 (AFB1). In this study, we have focused on the polymorphisms of xeroderma pigmentosum complementation group D (XPD) codon 312 and 751 (namely Asp312Asn and Lys751Gln), involved in nucleotide excision repair.</p> <p>Methods</p> <p>We conducted a case-control study including 618 HCC cases and 712 controls to evaluate the associations between these two polymorphisms and HCC risk for Guangxi population by means of TaqMan-PCR and PCR-RFLP analysis.</p> <p>Results</p> <p>We found that individuals featuring the XPD genotypes with codon 751 Gln alleles (namely XPD-LG or XPD-GG) were related to an elevated risk of HCC compared to those with the homozygote of XPD codon 751 Lys alleles [namely XPD-LL, adjusted odds ratios (ORs) were 1.75 and 2.47; 95% confidence interval (CIs) were 1.30-2.37 and 1.62-3.76, respectively]. A gender-specific role was evident that showed an higher risk for women (adjusted OR was 8.58 for XPD-GG) than for men (adjusted OR = 2.90 for XPD-GG). Interestingly, the interactive effects of this polymorphism and AFB1-exposure information showed the codon 751 Gln alleles increase the risk of HCC for individuals facing longer exposure years (<it>P</it><sub>interaction </sub>= 0.011, OR = 0.85). For example, long-exposure-years (> 48 years) individuals who carried XDP-GG had an adjusted OR of 470.25, whereas long-exposure-years people with XDP-LL were at lower risk (adjusted OR = 149.12). However, we did not find that XPD codon 312 polymorphism was significantly associated with HCC risk.</p> <p>Conclusion</p> <p>These findings suggest that XPD Lys751Gln polymorphism is an important modulator of AFB1 related-HCC development in Guangxi population.</p
Expression of RFC/SLC19A1 is Associated with Tumor Type in Bladder Cancer Patients
Urinary bladder cancer (UBC) ranks ninth in worldwide cancer. In Egypt, the pattern of bladder cancer is unique in that both the transitional and squamous cell types prevail. Despite much research on the topic, it is still difficult to predict tumor progression, optimal therapy and clinical outcome. The reduced folate carrier (RFC/SLC19A1) is the major transport system for folates in mammalian cells and tissues. RFC is also the primary means of cellular uptake for antifolate cancer chemotherapeutic drugs, however, membrane transport of antifolates by RFC is considered as limiting to antitumor activity. The purpose of this study was to compare the mRNA expression level of RFC/SLC19A1 in urothelial and non-urothelial variants of bladder carcinomas. Quantification of RFC mRNA in the mucosa of 41 untreated bladder cancer patients was performed using RT-qPCR. RFC mRNA steady-state levels were ∼9-fold higher (N = 39; P<0.0001) in bladder tumor specimens relative to normal bladder mRNA. RFC upregulation was strongly correlated with tumor type (urothelial vs. non-urothelial; p<0.05) where median RFC mRNA expression was significantly (p<0.05) higher in the urothelial (∼14-fold) compared to the non-urothelial (∼4-fold) variant. This may account for the variation in response to antifolate-containing regimens used in the treatment of either type. RFC mRNA levels were not associated with tumor grade (I, II and III) or stage (muscle-invasive vs. non-muscle invasive) implying that RFC cannot be used for prognostic purposes in bladder carcinomas and its increased expression is an early event in human bladder tumors pathogenesis. Further, RFC can be considered as a potential marker for predicting response to antifolate chemotherapy in urothelial carcinomas
Menopausal Status Modifies Breast Cancer Risk Associated with the Myeloperoxidase (MPO) G463A Polymorphism in Caucasian Women: A Meta-Analysis
BACKGROUND: Breast cancer susceptibility may be modulated partly through polymorphisms in oxidative enzymes, one of which is myeloperoxidase (MPO). Association of the low transcription activity variant allele A in the G463A polymorphism has been investigated for its association with breast cancer risk, considering the modifying effects of menopausal status and antioxidant intake levels of cases and controls. METHODOLOGY/PRINCIPAL FINDINGS: To obtain a more precise estimate of association using the odds ratio (OR), we performed a meta-analysis of 2,975 cases and 3,427 controls from three published articles of Caucasian populations living in the United States. Heterogeneity among studies was tested and sensitivity analysis was applied. The lower transcriptional activity AA genotype of MPO in the pre-menopausal population showed significantly reduced risk (OR 0.56-0.57, p = 0.03) in contrast to their post-menopausal counterparts which showed non-significant increased risk (OR 1.14; p = 0.34-0.36). High intake of antioxidants (OR 0.67-0.86, p = 0.04-0.05) and carotenoids (OR 0.68-0.86, p = 0.03-0.05) conferred significant protection in the women. Stratified by menopausal status, this effect was observed in pre-menopausal women especially those whose antioxidant intake was high (OR 0.42-0.69, p = 0.04). In post-menopausal women, effect of low intake elicited susceptibility (OR 1.19-1.67, p = 0.07-0.17) to breast cancer. CONCLUSIONS/SIGNIFICANCE: Based on a homogeneous Caucasian population, the MPO G463A polymorphism places post-menopausal women at risk for breast cancer, where this effect is modified by diet
Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors
<p>Abstract</p> <p>Background</p> <p>We conducted a case-control study in the greater Toronto area to evaluate potential lung cancer risk factors including environmental tobacco smoke (ETS) exposure, family history of cancer, indoor air pollution, workplace exposures and history of previous respiratory diseases with special consideration given to never smokers.</p> <p>Methods</p> <p>445 cases (35% of which were never smokers oversampled by design) between the ages of 20-84 were identified through four major tertiary care hospitals in metropolitan Toronto between 1997 and 2002 and were frequency matched on sex and ethnicity with 425 population controls and 523 hospital controls. Unconditional logistic regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) for the associations between exposures and lung cancer risk.</p> <p>Results</p> <p>Any previous exposure to occupational exposures (OR total population 1.6, 95% CI 1.4-2.1, OR never smokers 2.1, 95% CI 1.3-3.3), a previous diagnosis of emphysema in the total population (OR 4.8, 95% CI 2.0-11.1) or a first degree family member with a previous cancer diagnosis before age 50 among never smokers (OR 1.8, 95% CI 1.0-3.2) were associated with increased lung cancer risk.</p> <p>Conclusions</p> <p>Occupational exposures and family history of cancer with young onset were important risk factors among never smokers.</p
Radiosensitivity in breast cancer assessed by the Comet and micronucleus assays
Spontaneous and radiation-induced genetic instability of peripheral blood mononuclear cells derived from unselected breast cancer (BC) patients (n=50) was examined using the single-cell gel electrophoresis (Comet) assay and a modified G2 micronucleus (MN) test. Cells from apparently healthy donors (n=16) and from cancer patients (n=9) with an adverse early skin reaction to radiotherapy (RT) served as references. Nonirradiated cells from the three tested groups exhibited similar baseline levels of DNA fragmentation assessed by the Comet assay. Likewise, the Comet analysis of in vitro irradiated (5 Gy) cells did not reveal any significant differences among the three groups with respect to the initial and residual DNA fragmentation, as well as the DNA repair kinetics. The G2 MN test showed that cells from cancer patients with an adverse skin reaction to RT displayed increased frequencies of both spontaneous and radiation-induced MN compared to healthy control or the group of unselected BC patients. Two patients from the latter group developed an increased early skin reaction to RT, which was associated with an increased initial DNA fragmentation in vitro only in one of them. Cells from the other BC patient exhibited a striking slope in the dose–response curve detected by the G2 MN test. We also found that previous RT strongly increased both spontaneous and in vitro radiation-induced MN levels, and to a lesser extent, the radiation-induced DNA damage assessed by the Comet assay. These data suggest that clinical radiation may provoke genetic instability and/or induce persistent DNA damage in normal cells of cancer patients, thus leading to increased levels of MN induction and DNA fragmentation after irradiation in vitro. Therefore, care has to be taken when blood samples collected postradiotherapeutically are used to assess the radiosensitivity of cancer patients
- …