329 research outputs found

    The Holographic Universe

    Get PDF
    We present a holographic description of four-dimensional single-scalar inflationary universes in terms of a three-dimensional quantum field theory. The holographic description correctly reproduces standard inflationary predictions in their regime of applicability. In the opposite case, wherein gravity is strongly coupled at early times, we propose a holographic description in terms of perturbative QFT and present models capable of satisfying the current observational constraints while exhibiting a phenomenology distinct from standard inflation. This provides a qualitatively new method for generating a nearly scale-invariant spectrum of primordial cosmological perturbations.Comment: 20 pages, 5 figs; extended version of arXiv:0907.5542 including background material and detailed derivations. To appear in Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravit

    Bandit framework for systematic learning in wireless video-based face recognition

    Get PDF
    Video-based object or face recognition services on mobile devices have recently garnered significant attention, given that video cameras are now ubiquitous in all mobile communication devices. In one of the most typical scenarios for such services, each mobile device captures and transmits video frames over wireless to a remote computing cluster (a.k.a. “cloud” computing infrastructure) that performs the heavy-duty video feature extraction and recognition tasks for a large number of mobile devices. A major challenge of such scenarios stems from the highly-varying contention levels in the wireless transmission, as well as the variation in the task-scheduling congestion in the cloud. In order for each device to adapt the transmission, feature extraction and search parameters and maximize its object or face recognition rate under such contention and congestion variability, we propose a systematic learning framework based on multi-user multi-armed bandits. The performance loss under two instantiations of the proposed framework is characterized by the derivation of upper bounds for the achievable shortterm and long-term loss in the expected recognition rate per face recognition attempt against the “oracle” solution that assumes a-priori knowledge of the system performance under every possible setting. Unlike well-known reinforcement learning techniques that exhibit very slow convergence when operating in highly-dynamic environments, the proposed bandit-based systematic learning quickly approaches the optimal transmission and cloud resource allocation policies based on feedback on the experienced dynamics (contention and congestion levels). To validate our approach, time-constrained simulation results are presented via: (i) contention-based H.264/AVC video streaming over IEEE 802.11 WLANs and (ii) principal-component based face recognition algorithms running under varying congestion levels of a cloud-computing infrastructure. Against state- of-theart reinforcement learning methods, our framework is shown to provide 17:8% 44:5% reduction of the number of video frames that must be processed by the cloud for recognition and 11:5% 36:5% reduction in the video traffic over the WLAN

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.

    Covariant description of inelastic electron--deuteron scattering:predictions of the relativistic impulse approximation

    Full text link
    Using the covariant spectator theory and the transversity formalism, the unpolarized, coincidence cross section for deuteron electrodisintegration, d(e,eâ€Čp)nd(e,e'p)n, is studied. The relativistic kinematics are reviewed, and simple theoretical formulae for the relativistic impulse approximation (RIA) are derived and discussed. Numerical predictions for the scattering in the high Q2Q^2 region obtained from the RIA and five other approximations are presented and compared. We conclude that measurements of the unpolarized coincidence cross section and the asymmetry AϕA_\phi, to an accuracy that will distinguish between different theoretical models, is feasible over most of the wide kinematic range accessible at Jefferson Lab.Comment: 54 pages and 24 figure

    Hints of (trans-Planckian) asymptotic freedom in semiclassical cosmology

    Full text link
    We employ the semiclassical approximation to the Wheeler-DeWitt equation in the spatially flat de Sitter Universe to investigate the dynamics of a minimally coupled scalar field near the Planck scale. We find that, contrary to naive intuition, the effects of quantum gravitational fluctuations become negligible and the scalar field states asymptotically approach plane-waves at very early times. These states can then be used as initial conditions for the quantum states of matter to show that each mode essentially originated in the minimum energy vacuum. Although the full quantum dynamics cannot be solved exactly for the case at hand, our results can be considered as supporting the general idea of asymptotic safety in quantum gravity.Comment: 11 pages, 2 figures; replaced to match content of published versio

    Galectin-1-Binding Glycoforms of Haptoglobin with Altered Intracellular Trafficking, and Increase in Metastatic Breast Cancer Patients

    Get PDF
    Sera from 25 metastatic breast cancer patients and 25 healthy controls were subjected to affinity chromatography using immobilized galectin-1. Serum from the healthy subjects contained on average 1.2 mg per ml (range 0.7–2.2) galectin-1 binding glycoproteins, whereas serum from the breast cancer patients contained on average 2.2 mg/ml (range 0.8–3.9), with a higher average for large primary tumours. The major bound glycoproteins were α-2-macroglobulin, IgM and haptoglobin. Both the IgM and haptoglobin concentrations were similar in cancer compared to control sera, but the percentage bound to galectin-1 was lower for IgM and higher for haptoglobin: about 50% (range 20–80) in cancer sera and about 30% (range 25–50) in healthy sera. Galectin-1 binding and non-binding fractions were separated by affinity chromatography from pooled haptoglobin from healthy sera. The N-glycans of each fraction were analyzed by mass spectrometry, and the structural differences and galectin-1 mutants were used to identify possible galectin-1 binding sites. Galectin-1 binding and non-binding fractions were also analyzed regarding their haptoglobin function. Both were similar in forming complex with haemoglobin and mediate its uptake into alternatively activated macrophages. However, after uptake there was a dramatic difference in intracellular targeting, with the galectin-1 non-binding fraction going to a LAMP-2 positive compartment (lysosomes), while the galectin-1 binding fraction went to larger galectin-1 positive granules. In conclusion, galectin-1 detects a new type of functional biomarker for cancer: a specific type of glycoform of haptoglobin, and possibly other serum glycoproteins, with a different function after uptake into tissue cells

    Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings : a systematic review

    Get PDF
    Acknowledgments This systematic review was funded by the National Institute for Health Research Policy Research Programme, conducted through the Policy Research Unit in Cancer Awareness, Screening, and Early Diagnosis (PR-PRU-1217–21601). The views expressed in this publication are those of the authors and not necessarily those of the National Health Service, the NIHR or the Department of Health and Social Care. The first author (OTJ) was also supported by the CanTest Collaborative funded by Cancer Research UK (C8640/A23385), of which FMW is Director, JE is an Associate Director, and NC is Research Fellow. During protocol development, this Review benefited from the advice of an international expert panel from the CanTest collaborative, including Willie Hamilton (University of Exeter, Exeter, UK), Greg Rubin (University of Newcastle, Newcastle, UK), Hardeep Singh (Baylor College of Medicine, Houston, TX, USA), and Niek de Wit (University Medical Center Utrecht, Utrecht, Netherlands). The research was also supported by a Cancer Research UK Cambridge Centre Clinical Research Fellowship for OTJ, and a National Health and Medical Research Council Investigator Fellowship (APP1195302) for JE. The funding sources had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or in the decision to submit for publication. The authors would like to thank Isla Kuhn (Reader Services Librarian, University of Cambridge Medical Library, Cambridge, UK) for her help in developing the search strategy. We also thank Smiji Saji, who assisted with the early stages of the Review, Haruyuki Yanaoka, who assisted with the translation and assessment of papers that were written in Korean, and Steve Morris who assisted with the analysis of the data.Peer reviewedPublisher PD

    Relativistic effects and two-body currents in 2H(e⃗,eâ€Čp)n^{2}H(\vec{e},e^{\prime}p)n using out-of-plane detection

    Full text link
    Measurements of the 2H(e⃗,eâ€Čp)n{^2}H(\vec{e},e^{\prime}p)n reaction were performed using an 800-MeV polarized electron beam at the MIT-Bates Linear Accelerator and with the out-of-plane magnetic spectrometers (OOPS). The longitudinal-transverse, fLTf_{LT} and fLTâ€Čf_{LT}^{\prime}, and the transverse-transverse, fTTf_{TT}, interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2^2=0.15 (GeV/c)2^2. On comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions, and the importance of the two-body meson-exchange currents and isobar configurations. We demonstrate that these effects can be disentangled and studied by extracting the interference response functions using the novel out-of-plane technique.Comment: 4 pages, 4 figures, and submitted to PRL for publicatio

    Enhanced Non-Gaussianity from Excited Initial States

    Full text link
    We use the techniques of effective field theory in an expanding universe to examine the effect of choosing an excited inflationary initial state built over the Bunch-Davies state on the CMB bi-spectrum. We find that even for Hadamard states, there are unexpected enhancements in the bi-spectrum for certain configurations in momentum space due to interactions of modes in the early stages of inflation. These enhancements can be parametrically larger than the standard ones and are potentially observable in current and future data. These initial state effects have a characteristic signature in ll-space which distinguishes them from the usual contributions, with the enhancement being most pronounced for configurations corresponding to flattened triangles for which two momenta are collinear.Comment: 33 pages, 1 figure. Refs added and minor addition
    • 

    corecore