42 research outputs found

    Methods for direct determination of mitomycin C in aqueous solutions and in urine

    Get PDF
    Stripping voltammetry (SV) is used to quantitatively determine concentrations of the anti-neoplastic drug mitomycin C (MMC) alone and in mixtures with 5-fluorouracil and cisplatin, both of which are used in combined chemotherapy with MMC. If the accumulation is performed at the potentials of MMC reduction (-0.35 V vs. SCE), reduced MMC is strongly adsorbed at the electrode. It is possible to prepare a MMC-modified electrode, which, after a washing step, is transferred to the background electrolyte to determine MMC by voltammetry. This procedure, which is termed transfer stripping voltammetry (TSV), helps to eliminate interferences and can be applied for a direct determination of MMC alone or in mixtures with other drugs in urine

    No relation between body temperature and arterial recanalization at three days in patients with acute ischaemic stroke

    Get PDF
    Background: Recanalization of an occluded intracranial artery is influenced by temperature-dependent enzymes, including alteplase. We assessed the relation between body temperature on admission and recanalization. Methods: We included 278 patients with acute ischaemic stroke within nine hours after symptom onset, who had an intracranial arterial occlusion on admission CT angiography, in 13 participating centres. We calculated the relation per every 0.1°Celsius increase in admission body temperature and recanalization at three days. Results: Recanalization occurred in 80% of occluded arteries. There was no relation between body temperature and recanalization at three days after adjustments for age, NIHSS score on admission and treatment with alteplase (adjusted odds ratio per 0.1°Celsius, 0.99; 95% confidence interval, 0.94-1.05; p = 0.70). Results for patients treated or not treated with alteplase were essentially the same. Conclusions: Our findings suggest that in patients with acute ischaemic stroke there is no relation between body temperature on admission and recanalization of an occluded intracranial artery three days later, irrespective of treatment with alteplase

    Temporal profile of body temperature in acute ischemic stroke: Relation to infarct size and outcome

    Get PDF
    Background: High body temperatures after ischemic stroke have been associated with larger infarct size, but the temporal profile of this relation is unknown. We assess the relation between temporal profile of body temperature and infarct size and functional outcome in patients with acute ischemic stroke. Methods: In 419 patients with acute ischemic stroke we assessed the relation between body temperature on admission and during the first 3 days with both infarct size and functional outcome. Infarct size was measured in milliliters on CT or MRI after 3 days. Poor functional outcome was defined as a modified Rankin Scale score ≥3 at 3 months. Results: Body temperature on admission was not associated with infarct size or poor outcome in adjusted analyses. By contrast, each additional 1.0 °C in body temperature on day 1 was associated with 0.31 ml larger infarct size (95% confidence interval (CI) 0.04-0.59), on day 2 with 1.13 ml larger infarct size(95% CI, 0.83-1.43), and on day 3 with 0.80 ml larger infarct size (95% CI, 0.48-1.12), in adjusted linear regression analyses. Higher peak body temperatures on days two and three were also associated with poor outcome (adjusted relative risks per additional 1.0 °C in body temperature, 1.52 (95% CI, 1.17-1.99) and 1.47 (95% CI, 1.22-1.77), respectively). Conclusions: Higher peak body temperatures during the first days after ischemic stroke, rather than on admission, are associated with larger infarct size and poor functional outcome. This suggests that prevention of high temperatures may improve outcome if continued for at least 3 days

    CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke

    Get PDF
    Introduction: We investigated whether baseline CT angiography (CTA) and CT perfusion (CTP) in acute ischemic stroke could improve prediction of infarct presence and infarct volume on follow-up imaging. Methods: We analyzed 906 patients with suspected anterior circulation stroke from the prospective multicenter Dutch acute stroke study (DUST). All patients underwent baseline non-contrast CT, CTA, and CTP and follow-up non-contrast CT/MRI after 3 days. Multivariable regression models were developed including patient characteristics and non-contrast CT, and subsequently, CTA and CTP measures were added. The increase in area under the curve (AUC) and R2 was assessed to determine the additional value of CTA and CTP. Results: At follow-up, 612 patients (67.5 %) had a detectable infarct on CT/MRI; median infarct volume was 14.8 mL (interquartile range (IQR) 2.8–69.6). Regarding infarct presence, the AUC of 0.82 (95 % confidence interval (CI) 0.79–0.85) for patient characteristics and non-contrast CT was improved with addition of CTA measures (AUC 0.85 (95 % CI 0.82–0.87); p < 0.001) and was even higher after addition of CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001) and combined CTA/CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001). For infarct volume, adding combined CTA/CTP measures (R2 = 0.58) was superior to patient characteristics and non-contrast CT alone (R2 = 0.44) and to addition of CTA alone (R2 = 0.55) or CTP alone (R2 = 0.54; all p < 0.001). Conclusion: In the acute stage, CTA and CTP have additional value over patient characteristics and non-contrast CT for predicting infarct presence and infarct volume on follow-up imaging. These findings could be applied for patient selection in future trials on ischemic stroke treatment

    Prediction of outcome in patients with suspected acute ischaemic stroke with CT perfusion and CT angiography: The Dutch acute stroke trial (DUST) study protocol

    Get PDF
    Background: Prediction of clinical outcome in the acute stage of ischaemic stroke can be difficult when based on patient characteristics, clinical findings and on non-contrast CT. CT perfusion and CT angiography may provide additional prognostic information and guide treatment in the early stage. We present the study protocol of the Dutch acute Stroke Trial (DUST). The DUST aims to assess the prognostic value of CT perfusion and CT angiography in predicting stroke outcome, in addition to patient characteristics and non-contrast CT. For this purpose, individualised prediction models for clinical outcome after stroke based on the best predictors from patient characteristics and CT imaging will be developed and validated.Methods/design: The DUST is a prospective multi-centre cohort study in 1500 patients with suspected acute ischaemic stroke. All patients undergo non-contrast CT, CT perfusion and CT angiography within 9 hours after onset of the neurological deficits, and, if possible, follow-up imaging after 3 days. The primary outcome is a dichotomised score on the modified Rankin Scale, assessed at 90 days. A score of 0-2 represents good outcome, and a score of 3-6 represents poor outcome. Three logistic regression models will be developed, including patient characteristics and non-contrast CT (model A), with addition of CT angiography (model B), and CT perfusion parameters (model C). Model derivation will be performed in 60% of the study population, and model validation in the remaining 40% of the patients. Additional prognostic value of the models will be determined with the area under the curve (AUC) from the receiver operating characteristic (ROC) curve, calibration plots, assessment of goodness-of-fit, and likelihood ratio tests.Discussion: This study will provide insight in the added prognosti

    Intracranial Cerebrospinal Fluid Volume as a Predictor of Malignant Middle Cerebral Artery Infarction

    Get PDF
    Background and Purpose— Predicting malignant middle cerebral artery (MCA) infarction can help to identify patients who may benefit from preventive decompressive surgery. We aimed to investigate the association between the ratio of intracranial cerebrospinal fluid (CSF) volume to intracranial volume (ICV) and malignant MCA infarction. Methods— Patients with an occlusion proximal to the M3 segment of the MCA were selected from the DUST (Dutch Acute Stroke Study). Admission imaging included noncontrast computed tomography (CT), CT perfusion, and CT angiography. Patient characteristics and CT findings were collected. The ratio of intracranial CSF volume to ICV (CSF/ICV) was quantified on admission thin-slice noncontrast CT. Malignant MCA infarction was defined as a midline shift of >5 mm on follow-up noncontrast CT, which was performed 3 days after the stroke or in case of clinical deterioration. To test the association between CSF/ICV and malignant MCA infarction, odds ratios and 95% CIs were calculated for 3 multivariable models by using binary logistic regression. Model performances were compared by using the likelihood ratio test. Results— Of the 286 included patients, 35 (12%) developed malignant MCA infarction. CSF/ICV was independently associated with malignant MCA infarction in 3 multivariable models: (1) with age and admission National Institutes of Health Stroke Scale (odds ratio, 3.3; 95% CI, 1.1–11.1), (2) with admission National Institutes of Health Stroke Scale and poor collateral score (odds ratio, 7.0; 95% CI, 2.6–21.3), and (3) with terminal internal carotid artery or proximal M1 occlusion and poor collateral score (odds ratio, 7.7; 95% CI, 2.8–23.9). The performance of model 1 (areas under the receiver operating characteristic curves, 0.795 versus 0.824; P=0.033), model 2 (areas under the receiver operating characteristic curves, 0.813 versus 0.850; P<0.001), and model 3 (areas under the receiver operating characteristic curves, 0.811 versus 0.856; P<0.001) improved significantly after adding CSF/ICV. Conclusions— The CSF/ICV ratio is associated with malignant MCA infarction and has added value to clinical and imaging prediction models in limited numbers of patients

    Verwijdering van SO2 en NOx uit afgasstromen met H2O2

    No full text
    Document uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science

    Timing-Invariant Imaging of Collateral Vessels in Acute Ischemic Stroke

    Get PDF
    Contains fulltext : 116747.pdf (Publisher’s version ) (Closed access)BACKGROUND AND PURPOSE: Although collateral vessels have been shown to be an important prognostic factor in acute ischemic stroke, patients with lack of collaterals on standard imaging techniques may still have good clinical outcome. We postulate that in these cases collateral vessels are present though not visible on standard imaging techniques that are based on a single time frame. METHODS: This study included 40 consecutive patients with acute ischemic stroke with a large-vessel occlusion. Standard computed tomography angiography (CTA, single time frame) and CT perfusion (multiple time frames) were obtained at admission and timing-invariant (TI)-CTA was created from the CT perfusion data. Clinical outcome data (modified Rankin Scale) were assessed at 3-month follow-up. Four experienced observers independently assessed collateral status twice on both standard CTA and TI-CTA in an independent, blinded, randomized manner. Collateral status was rated as good if ≥50\% and poor if <50\% of collaterals were present compared with the contralateral hemisphere. RESULTS: Collateral status was rated higher on TI-CTA (good in 84\%) compared with standard CTA (good in 49\%; P<0.001). Thirty-one percent of patients with poor collateral status on standard CTA still had good clinical outcome. All of those patients, however, showed good collaterals on TI-CTA. All cases with poor collateral status rated on TI-CTA had poor clinical outcome. CONCLUSIONS: Collateral vessels may not always be visible on standard single time-frame CTA because of delayed contrast arrival. Future prognostic studies in acute stroke should consider delay-insensitive techniques, such as TI-CTA, instead of standard single time-frame imaging, such as standard CTA
    corecore