2,642 research outputs found

    Boundary-induced nonequilibrium phase transition into an absorbing state

    Full text link
    We demonstrate that absorbing phase transitions in one dimension may be induced by the dynamics of a single site. As an example we consider a one-dimensional model of diffusing particles, where a single site at the boundary evolves according to the dynamics of a contact process. As the rate for offspring production at this site is varied, the model exhibits a phase transition from a fluctuating active phase into an absorbing state. The universal properties of the transition are analyzed by numerical simulations and approximation techniques.Comment: 4 pages, 4 figures; minor change

    Hydrodynamics of the zero-range process in the condensation regime

    Full text link
    We argue that the coarse-grained dynamics of the zero-range process in the condensation regime can be described by an extension of the standard hydrodynamic equation obtained from Eulerian scaling even though the system is not locally stationary. Our result is supported by Monte Carlo simulations.Comment: 14 pages, 3 figures. v2: Minor alteration

    Why spontaneous symmetry breaking disappears in a bridge system with PDE-friendly boundaries

    Full text link
    We consider a driven diffusive system with two types of particles, A and B, coupled at the ends to reservoirs with fixed particle densities. To define stochastic dynamics that correspond to boundary reservoirs we introduce projection measures. The stationary state is shown to be approached dynamically through an infinite reflection of shocks from the boundaries. We argue that spontaneous symmetry breaking observed in similar systems is due to placing effective impurities at the boundaries and therefore does not occur in our system. Monte-Carlo simulations confirm our results.Comment: 24 pages, 7 figure

    Microscopic structure of travelling wave solutions in a class of stochastic interacting particle systems

    Get PDF
    We obtain exact travelling wave solutions for three families of stochastic one-dimensional nonequilibrium lattice models with open boundaries. These solutions describe the diffusive motion and microscopic structure of (i) of shocks in the partially asymmetric exclusion process with open boundaries, (ii) of a lattice Fisher wave in a reaction-diffusion system, and (iii) of a domain wall in non-equilibrium Glauber-Kawasaki dynamics with magnetization current. For each of these systems we define a microscopic shock position and calculate the exact hopping rates of the travelling wave in terms of the transition rates of the microscopic model. In the steady state a reversal of the bias of the travelling wave marks a first-order non-equilibrium phase transition, analogous to the Zel'dovich theory of kinetics of first-order transitions. The stationary distributions of the exclusion process with nn shocks can be described in terms of nn-dimensional representations of matrix product states.Comment: 27 page

    Solution of a class of one-dimensional reaction-diffusion models in disordered media

    Full text link
    We study a one-dimensional class of reaction-diffusion models on a 1010-parameters manifold. The equations of motion of the correlation functions close on this manifold. We compute exactly the long-time behaviour of the density and correlation functions for {\it quenched} disordered systems. The {\it quenched} disorder consists of disconnected domains of reaction. We first consider the case where the disorder comprizes a superposition, with different probabilistic weights, of finite segments, with {\it periodic boundary conditions}. We then pass to the case of finite segments with {\it open boundary conditions}: we solve the ordered dynamics on a open lattice with help of the Dynamical Matrix Ansatz (DMA) and investigate further its disordered version.Comment: 11 pages, no figures. To appear in Phys.Rev.

    Net N mineralization in subalpine grasslands: effect of aboveground vertebrate and invertebrate herbivores

    Get PDF
    Aboveground herbivores have strong effects on grassland nitrogen (N) cycling. They can accelerate or slow down soil net N mineralization depending on ecosystem productivity and grazing intensity. We assessed how a diverse herbivore community affects net N mineralization in subalpine grasslands. By using size-selective fences, we progressively excluded large, medium, and small mammals, as well as invertebrates from two vegetation types, and assessed how the exclosure types (ET) affected net N mineralization. The two vegetation types differed in long-term management (centuries), forage quality, and grazing history and intensity. To gain a more mechanistic understanding of how herbivores affect net N mineralization, we linked mineralization to soil abiotic (temperature; moisture; NO3, NH4, and total inorganic N concentrations/pools; C, N, P concentrations; pH; bulk density), soil biotic (microbial biomass; abundance of collembolans, mites, and nematodes) and plant (shoot and root biomass; consumption; plant C, N, and fiber content; plant N pool) properties. Net N mineralization differed between ET, but not between vegetation types. Thus, shortterm changes in herbivore community composition and, therefore, in grazing intensity had a stronger effect on net N mineralization than long-term management and grazing history. We found highest N mineralization values when only invertebrates were present, suggesting that mammals had a negative effect on net N mineralization. Of the variables included in our analyses, only mite abundance and aboveground plant biomass explained variation in net N mineralization among ET. Abundances of both mites and leaf-sucking invertebrates were positively correlated with aboveground plant biomass, and biomass increased with progressive exclusion. The negative impact of mammals on net N mineralization may be related partially to (1) differences in the amount of plant material (litter) returned to the belowground subsystem, which induced a positive bottom-up effect on mite abundance, and (2) alterations in the amount and/or distribution of dung, urine, and food waste. Thus, our results clearly show that short-term alterations of the aboveground herbivore community, can strongly impact nutrient cycling within ecosystems independent of long-term management and grazing history

    Motion of condensates in non-Markovian zero-range dynamics

    Full text link
    Condensation transition in a non-Markovian zero-range process is studied in one and higher dimensions. In the mean-field approximation, corresponding to infinite range hopping, the model exhibits condensation with a stationary condensate, as in the Markovian case, but with a modified phase diagram. In the case of nearest-neighbor hopping, the condensate is found to drift by a "slinky" motion from one site to the next. The mechanism of the drift is explored numerically in detail. A modified model with nearest-neighbor hopping which allows exact calculation of the steady state is introduced. The steady state of this model is found to be a product measure, and the condensate is stationary.Comment: 31 pages, 9 figure

    Reaction fronts in stochastic exclusion models with three-site interactions

    Get PDF
    The microscopic structure and movement of reaction fronts in reaction diffusion systems far from equilibrium are investigated. We show that some three-site interaction models exhibit exact diffusive shock measures, i.e. domains of different densities connected by a sharp wall without correlations. In all cases fluctuating domains grow at the expense of ordered domains, the absence of growth is possible between ordered domains. It is shown that these models give rise to aspects not seen in nearest neighbor models, viz. double shocks and additional symmetries. A classification of the systems by their symmetries is given and the link of domain wall motion and a free fermion description is discussed.Comment: 29 pages, 5 figure

    EQUIVALENCES BETWEEN STOCHASTIC SYSTEMS

    Full text link
    Time-dependent correlation functions of (unstable) particles undergoing biased or unbiased diffusion, coagulation and annihilation are calculated. This is achieved by similarity transformations between different stochastic models and between stochastic and soluble {\em non-stochastic} models. The results agree with experiments on one-dimensional annihilation-coagulation processes.Comment: 15 pages, Latex. Some corrections made and an appendix adde
    corecore