2 research outputs found

    Die Normalisierungsprozesstheorie als Ausgangspunkt für die Gestaltung von Lehre? Strategien für das gemeinsame Lernen heterogener Professionen

    Get PDF
    Wie kann multiprofessionelles Lehren und Lernen an Hochschulen normalisiert werden? Diese Frage wurde im Rahmen des Forschungsprojekts NorMultität untersucht. Die Normalisierungsprozesstheorie wurde als Ausgangspunkt für die Gestaltung von Lehre genommen. Die Theorie beschreibt vier Stufen, die durchlaufen werden müssen, um eine neue Praxis in die alltägliche Arbeit zu integrieren. Kohärenz, kognitive Partizipation, kollektives Handeln und reflexives Monitoring sind die Schlüsselbegriffe der Theorie. Die Ergebnisse des Projekts zeigen, dass multiprofessionelles Lehren und Lernen eine gemeinsame Wissensbasis erfordert, die durch Perspektivwechsel und Perspektivabgleich hergestellt werden kann. Die Handlungsstrategien der Lehrenden und Lernenden sollten darauf abzielen, ein gemeinsames Verständnis zu schaffen und den Austausch zu initiieren. Reflexives Monitoring ist notwendig, um die Konsequenzen des multiprofessionellen Lehrens und Lernens zu bewerten. (Herausgeber)How can multiprofessional teaching and learning be normalized at universities? This question was investigated in the research project NorMultität. The normalization process theory was taken as a starting point for the design of teaching. The theory describes four stages that must be passed through in order to integrate a new practice into everyday work. Coherence, cognitive participation, collective action, and reflexive monitoring are key concepts in the theory. The results of the project show that multiprofessional teaching and learning requires a common knowledge base, which can be established by changing and aligning perspectives. The action strategies of teachers and learners should aim at creating a common understanding and initiating exchange. Reflective monitoring is necessary to assess the consequences of multiprofessional teaching and learning. (Editor

    Distribution Analysis of Hydrogenases in Surface Waters of Marine and Freshwater Environments

    Get PDF
    Background Surface waters of aquatic environments have been shown to both evolve and consume hydrogen and the ocean is estimated to be the principal natural source. In some marine habitats, H2 evolution and uptake are clearly due to biological activity, while contributions of abiotic sources must be considered in others. Until now the only known biological process involved in H2 metabolism in marine environments is nitrogen fixation. Principal Findings We analyzed marine and freshwater environments for the presence and distribution of genes of all known hydrogenases, the enzymes involved in biological hydrogen turnover. The total genomes and the available marine metagenome datasets were searched for hydrogenase sequences. Furthermore, we isolated DNA from samples from the North Atlantic, Mediterranean Sea, North Sea, Baltic Sea, and two fresh water lakes and amplified and sequenced part of the gene encoding the bidirectional NAD(P)-linked hydrogenase. In 21% of all marine heterotrophic bacterial genomes from surface waters, one or several hydrogenase genes were found, with the membrane-bound H2 uptake hydrogenase being the most widespread. A clear bias of hydrogenases to environments with terrestrial influence was found. This is exemplified by the cyanobacterial bidirectional NAD(P)-linked hydrogenase that was found in freshwater and coastal areas but not in the open ocean. Significance This study shows that hydrogenases are surprisingly abundant in marine environments. Due to its ecological distribution the primary function of the bidirectional NAD(P)-linked hydrogenase seems to be fermentative hydrogen evolution. Moreover, our data suggests that marine surface waters could be an interesting source of oxygen-resistant uptake hydrogenases. The respective genes occur in coastal as well as open ocean habitats and we presume that they are used as additional energy scavenging devices in otherwise nutrient limited environments. The membrane-bound H2-evolving hydrogenases might be useful as marker for bacteria living inside of marine snow particles
    corecore