742 research outputs found

    C-terminal fusion of eGFP to the bradykinin B-2 receptor strongly affects down-regulation but not receptor internalization or signaling

    Get PDF
    A functional comparison was made between the wildtype bradykinin B, receptor (B(2)wt) and the chimera B(2)eGFP (enhanced green-fluorescent protein fused to the C-terminus of B(2)Wt), both stably expressed in HEK 293 cells. There was almost no difference in terms of ligand-inducible receptor phosphorylation and internalization, signal transduction (accumulation of inositol phosphates) or expression and affinity. However, stimulation for up to 8 h with 10 mu M bradykinin (BK) resulted in a strong decrease in surface receptors (by 60% within 5 h) in B(2)Wt, but not in B(2)eGFP. When the expression levels of both constructs where comparably reduced using a weaker promoter, long-term stimulation resulted in a reduction in surface receptors for B(2)wt(low) to less than 20% within 1 h, whereas the chimera B(2)eGFP(low) still displayed 50% binding activity after 2 h. A 1-h incubation in the absence of BK resulted in a recovery of 60% of the binding in B(2)wt(low) after 1-h stimulation with BK, but of only 20% after 7-h stimulation. In contrast, B(2)eGFP(low) levels were restored to more than 70%, even after 7-h stimulation. These data indicate that although the fusion of eGFP to B(2)wt does not affect its ligand-induced internalization, it strongly reduces the down-regulation, most likely by promoting receptor recycling over degradation

    A comparison of measured and simulated solar network contrast

    Full text link
    Long-term trends in the solar spectral irradiance are important to determine the impact on Earth's climate. These long-term changes are thought to be caused mainly by changes in the surface area covered by small-scale magnetic elements. The direct measurement of the contrast to determine the impact of these small-scale magnetic elements is, however, limited to a few wavelengths, and is, even for space instruments, affected by scattered light and instrument defocus. In this work we calculate emergent intensities from 3-D simulations of solar magneto-convection and validate the outcome by comparing with observations from Hinode/SOT. In this manner we aim to construct the contrast at wavelengths ranging from the NUV to the FIR.Comment: Proceedings paper, IAU XXVII, Symposium 264, 3 page

    MpTCP1 controls cell proliferation and redox processes in Marchantia polymorpha

    No full text
    TCP transcription factors are key regulators of angiosperm cell proliferation processes. It is unknown whether their regulatory growth capacities are conserved across land plants, which we examined in liverworts, one of the earliest diverging land plant lineages. We generated knockout mutants for MpTCP1, the single TCP‐P clade gene in Marchantia polymorpha, and characterized its function conducting cell proliferation and morphological analyses as well as mRNA expression, transcriptome, chemical and DNA binding studies. Mptcp1ge lines show a reduced vegetative thallus growth and extra tissue formation in female reproductive structures. Additionally, mutant plants reveal increased H2O2 levels and an enhanced pigmentation in the thallus caused by formation of secondary metabolites, such as aminochromes. MpTCP1 proteins interact redox‐dependently with DNA and regulate the expression of a comprehensive redox network, comprising enzymes involved in H2O2 metabolism. MpTCP1 regulates Marchantia growth context‐dependently. Redox sensitivity of the DNA binding capacity of MpTCP1 proteins provides a mechanism to respond to altered redox conditions. Our data suggest that MpTCP1 activity could thereby have contributed to diversification of land plant morphologies and to adaptations to abiotic and biotic challenges, experienced by liverworts during early land plant colonization

    A remembrance of things (best) forgotten: The 'allegorical past' and the feminist imagination

    Get PDF
    This is the author's PDF version of an article published in Feminist theology© 2012. The definitive version is available at http://fth.sagepub.com/This article discusses the US TV series Mad Men, which is set in an advertising agency in 1960s New York, in relation to two key elements which seem significant for a consideration of the current state of feminism in church and academy, both of which centre around what it means to remember or (not) to forget

    Spot sizes on Sun-like stars

    No full text
    The total area coverage by starspots is of interest for a variety of reasons, but direct techniques only provide estimates of this important quantity. Sunspot areas exhibit a lognormal size distribution irrespective of the phase of the activity cycle, implying that most sunspots are small. Here we explore the consequences if starspot areas were similarly distributed. The solar data allow for an increase in the fraction of larger sunspots with increasing activity. Taking this difference between the size distribution at sunspot maximum and minimum, we extrapolate to higher activity levels, assuming different dependencies of the parameters of the lognormal distribution on total spot coverage. We find that even for very heavily spotted (hypothetical) stars a large fraction of the spots are smaller than the current resolution limit of Doppler images and might hence be missed on traditional Doppler maps.Comment: 10 pages with 10 figures, accepted for publication in MNRA

    A digital feedback system for advanced ion manipulation techniques in Penning traps

    Get PDF
    The possibility to apply active feedback to a single ion in a Penning trap using a fully digital system is demonstrated. Previously realized feedback systems rely on analog circuits that are susceptible to environmental fluctuations and long term drifts, as well as being limited to the specific task they were designed for. The presented system is implemented using an FPGA-based platform (STEMlab), offering greater flexibility, higher temporal stability and the possibility for highly dynamic variation of feedback parameters. The system's capabilities were demonstrated by applying feedback to the ion detection system primarily consisting of a resonant circuit. This allowed shifts in its resonance frequency of up to several kHz and free modification of its quality factor within two orders of magnitude, which reduces the temperature of a single ion by a factor of 6. Furthermore, a phase-sensitive detection technique for the axial ion oscillation was implemented, which reduces the current measurement time by two orders of magnitude while simultaneously eliminating model-related systematic uncertainties. The use of FPGA technology allowed the implementation of a fully-featured data acquisition system, making it possible to realize feedback techniques that require constant monitoring of the ion signal. This was successfully used to implement a single-ion self-excited oscillator.Comment: The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at https://aip.scitation.org/journal/rs

    Sunrise: instrument, mission, data and first results

    Full text link
    The Sunrise balloon-borne solar observatory consists of a 1m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system and further infrastructure. The first science flight of Sunrise yielded high-quality data that reveal the structure, dynamics and evolution of solar convection, oscillations and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit, and probably beyond.Comment: accepted by ApJ

    Bright points in the quiet Sun as observed in the visible and near-UV by the balloon-borne observatory Sunrise

    Full text link
    Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using Sunrise balloon-borne observatory data of the quiet Sun at disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m/s, but some display strong down- or upflows reaching a few km/s.Comment: Accepted for publication in The Astrophysical Journal Letters on September 08 201

    Impact of Locally Suppressed Wave sources on helioseismic travel times

    Full text link
    Wave travel-time shifts in the vicinity of sunspots are typically interpreted as arising predominantly from magnetic fields, flows, and local changes in sound speed. We show here that the suppression of granulation related wave sources in a sunspot can also contribute significantly to these travel-time shifts, and in some cases, an asymmetry between in and outgoing wave travel times. The tight connection between the physical interpretation of travel times and source-distribution homogeneity is confirmed. Statistically significant travel-time shifts are recovered upon numerically simulating wave propagation in the presence of a localized decrease in source strength. We also demonstrate that these time shifts are relatively sensitive to the modal damping rates; thus we are only able to place bounds on the magnitude of this effect. We see a systematic reduction of 10-15 seconds in pp-mode mean travel times at short distances (∌6.2\sim 6.2 Mm) that could be misinterpreted as arising from a shallow (thickness of 1.5 Mm) increase (∌\sim 4%) in the sound speed. At larger travel distances (∌24\sim 24 Mm) a 6-13 s difference between the ingoing and outgoing wave travel times is observed; this could mistakenly be interpreted as being caused by flows.Comment: Revised version. Submitted to Ap
    • 

    corecore