20 research outputs found

    The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion

    Get PDF
    Poster presentation: Here we investigated the role of the amyloid precursor protein (APP) in regulation of Ca2+ store depletion-induced neural cell death. Ca2+ store depletion from the endoplasmic reticulum (ER) was induced by the SERCA (Sarco/Endoplasmic Reticulum Calcium ATPase) inhibitor thapsigargin which led to a rapid induction of the unfolded protein response (UPR) and a delayed activation of executioner caspases in the cultures. Overexpression of APP potently enhanced cytosolic Ca2+ levels and cell death after ER Ca2+ store depletion in comparison to vector-transfected controls. GeneChipR and RT-PCR analysis revealed that the expression of classical UPR chaperone genes was not altered by overexpression of APP.Interestingly, the induction of the ER stress-responsive pro-apoptotic transcription factor CHOP was significantly upregulated in APP-overexpressing cells in comparison to vectortransfected controls. Chelation of intracellular Ca2+ with BAPTA-AM revealed that enhanced CHOP expression after store depletion occured in a Ca2+-dependent manner in APPoverexpressing cells. Prevention of CHOP induction by BAPTA-AM and by RNA interference was also able to abrogate the potentiating effect of APP on thapsigargin-induced apoptosis. Application of the store-operated channel (SOC)-inhibitors SK F96365 and 2-APB downmodulated APP-triggered potentiation of cytosolic Ca2+ levels and apoptosis after treatment with thapsigargin. Our data demonstrate that APP-mediated regulation of ER Ca2+ homeostasis significantly modulates Ca2+ store depletion-induced cell death in a SOC- and CHOP-dependent manner, but independent of the UPR

    The amyloid precursor protein protects PC12 cells against endoplasmic reticulum stress-induced apoptosis

    No full text
    Endoplasmic reticulum (ER) stress is believed to play an important role in neurodegenerative disorders such as Alzheimer's disease. In the present study, we investigated the effect of the human amyloid precursor protein (APP) on the ER stress response in PC12 cells. Tunicamycin, an inhibitor of N-glycosylation, rapidly induced the expression of the ER-resident chaperone Bip/grp78, a known target gene of the unfolded protein response. Prolonged treatment with tunicamycin (</= 12 h) resulted in the activation of executioner caspases 3 and 7. Interestingly, PC12 cells overexpressing human wild-type APP (APPwt) showed increased resistance to tunicamycin-induced apoptosis compared with empty vector-transfected controls. This neuroprotective effect was significantly diminished in cells expressing the Swedish mutation of APP (KM670/671NL). Similar effects were observed when ER stress was induced with brefeldin A, an inhibitor of ER-to-Golgi protein translocation. Of note, APP-mediated neuroprotection was not associated with altered expression of Bip/grp78 or transcription factor C/EBP homologous protein-10 (CHOP/GADD153), suggesting that APP acted either downstream or independently of ER-to-nucleus signaling. Our data indicate that APP plays an important physiological role in protecting neurons from the consequences of prolonged ER stress, and that APP mutations associated with familial Alzheimer's disease may impair this protective activity

    Epigenetic changes in islets of langerhans preceding the onset of diabetes

    No full text
    The identification of individuals with a high risk of developing type 2 diabetes (T2D) is fundamental for pre-vention. Here, we used a translational approach and prediction criteria to identify changes in DNA methylation visible before the development of T2D. Islets of Langerhans were isolated from genetically identical 10-week-old female New Zealand Obese mice, which differ in their degree of hyperglycemia and in liver fat content. The application of a semiexplorative approach identified 497 differentially expressed and methylated genes (P = 6.42e-09, hypergeometric test) enriched in pathways linked to insulin secretion and extracellular matrix-receptor interaction. The comparison of mouse data with DNA methylation levels of incident T2D cases from the prospective European Prospective Investigation of Cancer (EPIC)-Potsdam cohort, revealed 105 genes with altered DNA methylation at 605 cytosine-phosphate-guanine (CpG) sites, which were associated with future T2D. AKAP13, TENM2, CTDSPL, PTPRN2, and PTPRS showed the strongest predictive potential (area under the receiver operating characteristic curve values 0.62–0.73). Among the new candidates identified in blood cells, 655 CpG sites, located in 99 genes, were differentially methylated in islets of humans with T2D. Using correction for multiple testing detected 236 genes with an altered DNA methylation in blood cells and 201 genes in diabetic islets. Thus, the introduced translational approach identified novel putative biomarkers for early pancreatic islet aberrations preceding T2D

    Neuronal functions, feeding behavior, and energy balance in Slc2a3+/– mice

    No full text
    Homozygous deletion of the gene of the neuronal glucose transporter GLUT3 (Slc2a3) in mice results in embryonic lethality, whereas heterozygotes (Slc2a3+/–) are viable. Here, we describe the characterization of heterozygous mice with regard to neuronal function, glucose homeostasis, and, since GLUT3 might be a component of the neuronal glucose-sensing mechanism, food intake and energy balance. Levels of GLUT3 mRNA and protein in brain were reduced by 50% in Slc2a3+/– mice. Electrographic features examined by electroencephalographic recordings give evidence for slightly but significantly enhanced cerebrocortical activity in Slc2a3+/– mice. In addition, Slc2a3+/– mice were slightly more sensitive to an acoustic startle stimulus (elevated startle amplitude and reduced prepulse inhibition). However, systemic behavioral testing revealed no other functional abnormalities, e.g., in coordination, reflexes, motor abilities, anxiety, learning, and memory. Furthermore, no differences in body weight, blood glucose, and insulin levels were detected between wild-type and Slc2a3+/– littermates. Food intake as monitored randomly or after intracerebroventricular administration of 2-deoxyglucose or D-glucose, or food choice for carbohydrates/fat was not affected in Slc2a3+/– mice. Taken together, our data indicate that, in contrast to Slc2a1, a single allele of Slc2a3 is sufficient for maintenance of neuronal energy supply, motor abilities, learning and memory, and feeding behavior

    The Role of Structural Flexibility in Plasmon-Driven Coupling Reactions: Kinetic Limitations in the Dimerization of Nitro-Benzenes

    No full text
    The plasmon-driven dimerization of 4-nitrothiophenol (4NTP) to 4-4’-dimercaptoazobenzene (DMAB) has become a testbed for understanding bimolecular photoreactions enhanced by nanoscale metals, in particular, regarding the relevance of electron transfer and heat transfer from the metal to the molecule. By adding a methylene group between the thiol bond and the nitrophenyl, we add structural flexibility to the reactant molecule. Time-resolved surface-enhanced Raman-spectroscopy proves that this (4-nitrobenzyl)mercaptan (4NBM) molecule has a larger dimerization rate and dimerization yield than 4NTP and higher selectivity towards dimerization. X-ray photoelectron spectroscopy and density functional theory calculations show that the electron transfer would prefer activation of 4NTP over 4NBM. We conclude that the rate limiting step of this plasmonic reaction is the dimerization step, which is dramatically enhanced by the additional flexibility of the reactant. This study may serve as an example for using nanoscale metals to simultaneously provide charge carriers for bond activation and localized heat for driving bimolecular reaction steps. The molecular structure of reactants can be tuned to control the reaction kinetics.</div
    corecore