20 research outputs found

    Multiple phases in modularity-based community detection

    Full text link
    Detecting communities in a network, based only on the adjacency matrix, is a problem of interest to several scientific disciplines. Recently, Zhang and Moore have introduced an algorithm in [P. Zhang and C. Moore, Proceedings of the National Academy of Sciences 111, 18144 (2014)], called mod-bp, that avoids overfitting the data by optimizing a weighted average of modularity (a popular goodness-of-fit measure in community detection) and entropy (i.e. number of configurations with a given modularity). The adjustment of the relative weight, the "temperature" of the model, is crucial for getting a correct result from mod-bp. In this work we study the many phase transitions that mod-bp may undergo by changing the two parameters of the algorithm: the temperature TT and the maximum number of groups qq. We introduce a new set of order parameters that allow to determine the actual number of groups q^\hat{q}, and we observe on both synthetic and real networks the existence of phases with any q^{1,q}\hat{q} \in \{1,q\}, which were unknown before. We discuss how to interpret the results of mod-bp and how to make the optimal choice for the problem of detecting significant communities.Comment: 8 pages, 7 figure

    Blind Sensor Calibration using Approximate Message Passing

    Full text link
    The ubiquity of approximately sparse data has led a variety of com- munities to great interest in compressed sensing algorithms. Although these are very successful and well understood for linear measurements with additive noise, applying them on real data can be problematic if imperfect sensing devices introduce deviations from this ideal signal ac- quisition process, caused by sensor decalibration or failure. We propose a message passing algorithm called calibration approximate message passing (Cal-AMP) that can treat a variety of such sensor-induced imperfections. In addition to deriving the general form of the algorithm, we numerically investigate two particular settings. In the first, a fraction of the sensors is faulty, giving readings unrelated to the signal. In the second, sensors are decalibrated and each one introduces a different multiplicative gain to the measures. Cal-AMP shares the scalability of approximate message passing, allowing to treat big sized instances of these problems, and ex- perimentally exhibits a phase transition between domains of success and failure.Comment: 27 pages, 9 figure
    corecore