research

Multiple phases in modularity-based community detection

Abstract

Detecting communities in a network, based only on the adjacency matrix, is a problem of interest to several scientific disciplines. Recently, Zhang and Moore have introduced an algorithm in [P. Zhang and C. Moore, Proceedings of the National Academy of Sciences 111, 18144 (2014)], called mod-bp, that avoids overfitting the data by optimizing a weighted average of modularity (a popular goodness-of-fit measure in community detection) and entropy (i.e. number of configurations with a given modularity). The adjustment of the relative weight, the "temperature" of the model, is crucial for getting a correct result from mod-bp. In this work we study the many phase transitions that mod-bp may undergo by changing the two parameters of the algorithm: the temperature TT and the maximum number of groups qq. We introduce a new set of order parameters that allow to determine the actual number of groups q^\hat{q}, and we observe on both synthetic and real networks the existence of phases with any q^{1,q}\hat{q} \in \{1,q\}, which were unknown before. We discuss how to interpret the results of mod-bp and how to make the optimal choice for the problem of detecting significant communities.Comment: 8 pages, 7 figure

    Similar works