279 research outputs found

    From Functional Group Ensembles to Single Molecules: Scanning Force Microscopy of Supramolecular and Polymeric Systems

    Get PDF
    Surfaces in supramolecular and polymeric systems were characterized by scanning force microscopy (SFM) using probe tips functionalized with self-assembled monolayers (SAMs). This approach allows one to control the forces between tip and surface by immobilizing suitable molecules, which expose selected functional groups, onto gold-coated probes. The objective of this Thesis work was the extension of SFM with SAM-functionalized probes (so-called "chemical force microscopy", CFM) to technologically relevant surfacetreated polymers and elastomers with the ultimate aim of laterally resolved detection of functional group distributions on a sub-100 nm level. In measurements of interaction forces between a few or even individual molecules in supramolecular systems the transition from studying continuum to studying non-continuum properties was also attempted. In situ measurements of reaction kinetics using "inverted CFM" on a scale of 10 - 100 molecules were achieved. Furthermore, interactions between ensembles of functional groups and individual molecules were studied and provided fundamental insight into functional group distributions on polymer surfaces as well as rupture forces of individual host-guest complexes

    Scanning thermal lithography of tailored tert-butyl ester protected carboxylic acid functionalized (Meth)acrylate polymer platforms

    Get PDF
    In this paper, we report on the development of tailored polymer films for high-resolution atomic force microscopy based scanning thermal lithography (SThL). In particular, full control of surface chemical and topographical structuring was sought. Thin cross-linked films comprising poly(tert-butyl methacrylate) (MA(20)) or poly(tert-butyl acrylate) (A(20)) were prepared via UV initiated free radical polymerization. Thermogravimetric analysis (TGA) and FTIR spectroscopy showed that the heat-induced thermal decomposition of MA(20) by oxidative depolymerization is initially the primary reaction followed by tert-butyl ester thermolysis. By contrast, no significant depolymerization was observed for A(20). For A(20) and MA(20) (at higher temperatures and/or longer reaction times) the thermolysis of the tert-butyl ester liberates isobutylene and yields carboxylic acid groups, which react further intramolecularly to cyclic anhydrides. The values of the apparent activation energies (E(a)) for the thermolysis were calculated to be 125 ± 13 kJ mol(-1) and 116 ± 7 kJ mol(-1) for MA(20) and A(20), respectively. Both MA(20) and A(20) films showed improved thermomechanical stability during SThL compared to non cross-linked films. Carboxylic acid functionalized lines written by SThL in A(20) films had a typically ~10 times smaller width compared to those written in MA(20) films regardless of the tip radius of the heated probe and did not show any evidence for thermochemically or thermomechanically induced modification of film topography. These observations and the E(a) of 45 ± 3 kJ mol(-1) for groove formation in MA(20) estimated from the observed volume loss are attributed to oxidative thermal depolymerization during SThL of MA(20) films, which is considered to be the dominant reaction mechanism for MA(20). The smallest line width values obtained for MA(20) and A(20) films with SThL were 83 ± 7 nm and 21 ± 2 nm, whereas the depth of the lines was below 1 nm, respectively

    Polymerization of diacetylene phospolipid bilayers on solid substrate: Influence of the film deposition temperature

    Get PDF
    Micropatterned phospholipid bilayers on solid substrates offer an attractive platform for various applications, such as high throughput drug screening. We have previously developed a photopolymerization-based methodology for generating micropatterned bilayers composed of polymerized and fluid lipid bilayers. Lithographic photopolymerization of a diacetylene-containing phospholipid (DiynePC) allowed facile fabrication of compartmentalized arrays of fluid lipid membranes. Herein, we report on a key experimental parameter that significantly influences the homogeneity and quality of the fabricated polymeric bilayers, namely the temperature at which monolayers of monomeric DiynePC were formed on the water surface and transferred onto solid substrates by the Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) technique. Using fluorescence microscopy and atomic force microscopy, it was found that polymerized bilayers were homogeneous, if bilayers of DiynePC were prepared below the triple point temperature (ca. 20 C) of the monolayer, where a direct transition from the gaseous state to the liquid condensed state occurred. Bilayers prepared above this temperature had a markedly increased number of crack-like line defects. The differences were attributed to the domain structures in the monolayer that were transferred from the water surface to the substrate. Domain size, rather than the molecular packing in each domain, was concluded to play a critical role in the formation of defects. The spontaneous curvature and area changes of bilayers were postulated to cause destabilization and detachment of the films from the substrate upon polymerization. Our present results highlight the importance of controlling the domain structures for the homogeneity of polymerized bilayers required in technological applications

    Chemical Composition of Polymer Surfaces Imaged by Atomic ForceMicroscopy and Complementary Approaches

    Get PDF
    In this article we review the recent developments in the field of high resolution lateral mapping of the surface chemical composition of polymers by atomic force microscopy (AFM) and other complementary imaging techniques. The different AFM approaches toward nanometer scale mapping with chemical sensitivity based on chemical force microscopy (CFM) are discussed as a means to unravel, for instance, the lateral distribution of surface chemistry, the stability of various types of functional groups in various environments, or the interactions with controlled functional groups at the tip surface. The applicability and current limitations of CFM, which allows one to image chemical functional group distributions with a resolution in principle down to the 10–20 nm scale, are critically discussed. In addition, complementary imaging techniques are briefly reviewed and compared to the AFM-based techniques. The complementary approaches comprise various spectroscopies (infrared and Raman), secondary ion mass spectrometry (SIMS), matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), X-ray photoelectron spectroscopy (XPS or ESCA), and near-field optical techniques used for imaging

    Self-Complementary Recognition of Supramolecular Urea - Aminotriazines in Solution and on Surfaces

    Get PDF
    The recognition of self-complementary quadruple urea–aminotriazine (UAT)-based hydrogen-bonded arrays was investigated in solution and at surfaces. For this purpose, an UAT-based donor–acceptor–donor–acceptor (DADA) array and complementary receptors were synthesized. Two-dimensional proton nuclear magnetic resonance (1H NMR) measurements in CDCl3 pointed at an intramolecular hydrogen-bond stabilization of the UAT, which promotes a planar molecular geometry and, thereby, results in a significant stabilization of the dimeric complex. The bond strength of the UAT dimers at surfaces was determined by atomic force microscopy-based single molecule force spectroscopy (AFM–SMFS) in hexadecane. The UAT receptor was immobilized on gold surfaces using an ultrathin layer of ethylene glycol terminated lipoic acid and isocyanate chemistry. The layers obtained and the reversible self-complementary recognition were thoroughly characterized with contact angle measurements, grazing angle Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and AFM. Loading rate-dependent SMFS measurements yielded a barrier width xÎČ and a bond lifetime at zero force toff(0) of 0.29 ± 0.02 nm and 100 ± 80 ms, respectively. The value of the corresponding off-rate constant koff suggests a substantially larger value of the dimerization constant compared to theoretical predictions, which is fully in line with the additional intramolecular hydrogen-bond stabilization detected in solution by 1H NMR spectroscopy

    Patterns of Surface Immobilized Block Copolymer Vesicle Nanoreactors

    Get PDF
    The immobilization and positioning of ultra small reaction vessels on solid supports open new pathways in applications such as lab-on-a-chip, sensors, microanalyses and microreactors. In our work block copolymer vesicles made from polystyrene-block-polyacrylic acid (PS-b-PAA) were immobilized from aqueous medium onto 3-amino propyl trimethoxysilane functionalized silicon surfaces exploiting electrostatic interactions. The immobilization of the vesicles was investigated by Fourier transform infrared (FTIR) spectroscopy, as well as fluorescence optical and atomic force microscopy (AFM). In addition, the influence of pH and ionic strength on the surface coverage of vesicles bound to the surface was elucidated. Finally micro-molding in capillaries (MIMIC) was utilized to create line patterns of the vesicles containing the enzyme trypsin and the fluorogenic substrate rhodamine 110 bisamide. The selective positioning of vesicle nanoreactors in conjunction with electrostatic immobilization serves as a proof of principle for potential applications in real-time observation of confined chemical reaction inside vesicles as nanocontainers and for the fabrication of integrated microarray systems

    A Dimethylaminophenyl-Substituted Naphtho[1,2-b]quinolizinium as a Multicolor NIR Probe for the Fluorimetric Detection of Intracellular Nucleic Acids and Proteins

    Get PDF
    AbstractThe dye 3‐(4‐(N,N‐dimethylamino)phenyl)naphtho[1,2‐b]quinolizinium was synthesized by means of a Suzuki–Miyaura reaction in good yield, and its binding properties with duplex DNA, quadruplex DNA (G4‐DNA), RNA, and bovine serum albumin (BSA) were investigated by photometric, fluorimetric and polarimetric titrations and DNA denaturation analysis. The compound intercalates into DNA and RNA, associates in binding site I of BSA, and binds to G4‐DNA by terminal π stacking. The ligand exhibits a fluorescence light‐up effect upon complexation to these biomacromolecules, which is more pronounced and blue shifted in the presence of BSA (Ίfl=0.29, λfl=627 nm) than with the nucleic acids (Ίfl=0.01–0.05, λfl=725–750 nm). Furthermore, the triple‐exponential fluorescence decay of the probe when bound to biomacromolecules in a cell enables their visualization in this medium and the differential labeling of cellular components

    Micro- and Nanofabrication of Robust Reactive Arrays Based on the Covalent Coupling of Dendrimers to Activated Monolayers

    Get PDF
    We report on methods to fabricate robust micro- and nanopatterned platforms, comprising high functional group densities and quasi three-dimensional structures, for possible applications in biochip array technologies. For this purpose, amine-terminated poly(amidoamine) (PAMAM) dendrimers were immobilized via amide linkage formation on 11,11'-dithiobis(N-hydroxysuccinimidylundecanoate) (NHS-C10) self-assembled monolayers (SAMs) on gold surfaces. The coupling reaction and the resulting assemblies were characterized by grazing incidence reflection Fourier transform infrared spectroscopy, contact angle measurements, X-ray photoelectron spectroscopy (XPS), and atomic force microscopy; the obtained surface coverage values were successfully fitted with a Langmuir isotherm. The fraction of unreacted peripheral primary amine groups of the surface-immobilized PAMAM dendrimers was 28% as determined by XPS analysis of trifluoroacetic anhydride-labeled assemblies. Patterning of the PAMAM dendrimers on NHS-C10 SAMs on the micrometer and sub-100-nm scale was achieved by microcontact printing and dip pen nanolithography. The resulting patterns are characterized by their high degree of order and stability of the transferred molecules due to covalent attachment
    • 

    corecore