3,642 research outputs found
Resonant and inelastic Andreev tunneling observed on a carbon nanotube quantum dot
We report the observation of two fundamental sub-gap transport processes
through a quantum dot (QD) with a superconducting contact. The device consists
of a carbon nanotube contacted by a Nb superconducting and a normal metal
contact. First, we find a single resonance with position, shape and amplitude
consistent with the theoretically predicted resonant Andreev tunneling (AT)
through a single QD level. Second, we observe a series of discrete replicas of
resonant AT at a separation of eV, with a gate, bias and
temperature dependence characteristic for boson-assisted, inelastic AT, in
which energy is exchanged between a bosonic bath and the electrons. The
magnetic field dependence of the replica's amplitudes and energies suggest that
two different bosons couple to the tunnel process.Comment: 5 pages + 9 pages supplementary materia
Andreev bound states probed in three-terminal quantum dots
We demonstrate several new electron transport phenomena mediated by Andreev
bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with
one superconducting (S) contact in the center and two adjacent normal metal (N)
contacts. Three-terminal spectroscopy allows us to identify the coupling to the
N contacts as the origin of the Andreev resonance (AR) linewidths and to
determine the critical coupling strengths to S, for which a ground state
transition S-QD systems can occur. We ascribe replicas of the lowest-energy ABS
resonance to transitions between the ABS and odd-parity excited QD states, a
process called excited state ABS resonances. In the conductance between the two
N contacts we find a characteristic pattern of positive and negative
differential subgap conductance, which we explain by considering two nonlocal
processes, the creation of Cooper pairs in S by electrons from both N
terminals, and a novel mechanism called resonant ABS tunneling. In the latter,
electrons are transferred via the ABS without creating Cooper pairs in S. The
three-terminal geometry also allows spectroscopy experiments with different
boundary conditions, for example by leaving S floating. Surprisingly, we find
that, depending on the boundary conditions, the experiments either show
single-particle Coulomb blockade resonances, ABS characteristics, or both in
the same measurements, seemingly contradicting the notion of ABSs replacing the
single particle states as eigenstates of the QD. We qualitatively explain these
results as originating from the finite time scale required for the coherent
oscillations between the superposition states after a single electron tunneling
event. These experiments demonstrate that three-terminal experiments on a
single complex quantum object can also be useful to investigate charge dynamics
otherwise not accessible due to the very high frequencies.Comment: 15 pages, 16 figure
Gate-tunable split Kondo effect in a carbon nanotube quantum dot
We show a detailed investigation of the split Kondo effect in a carbon
nanotube quantum dot with multiple gate electrodes. It is found that the
splitting decreases for increasing magnetic field, to result in a recovered
zero-bias Kondo resonance at finite magnetic field. Surprisingly, in the same
charge state, but under different gate-configurations, the splitting does not
disappear for any value of the magnetic field, but we observe an avoided
crossing of two high-conductance lines. We think that our observations can be
understood in terms of a two-impurity Kondo effect with two spins coupled
antiferromagnetically. The exchange coupling between the two spins can be
influenced by a local gate, and the non-recovery of the Kondo resonance for
certain gate configurations is explained by the existence of a small
antisymmetric contribution to the exchange interaction between the two spins.Comment: 12 pages, 4 figures, published versio
Electrical Spin Injection in Multi-Wall carbon NanoTubes with transparent ferromagnetic contacts
We report on electrical spin injection measurements on MWNTs . We use a
ferromagnetic alloy PdNi with x 0.7 which allows to
obtain devices with resistances as low as 5.6 at 300 . The yield
of device resistances below 100 , at 300 , is around 50%. We
measure at 2 a hysteretic magneto-resistance due to the magnetization
reversal of the ferromagnetic leads. The relative difference between the
resistance in the antiparallel (AP) orientation and the parallel (P)
orientation is about 2%.Comment: submitted to APL version without figures version with figures
available on http://www.unibas.ch/phys-meso
-factor anisotropy in nanowire-based InAs quantum dots
The determination and control of the electron -factor in semiconductor
quantum dots (QDs) are fundamental prerequisites in modern concepts of
spintronics and spin-based quantum computation. We study the dependence of the
-factor on the orientation of an external magnetic field in quantum dots
(QDs) formed between two metallic contacts on stacking fault free InAs
nanowires. We extract the -factor from the splitting of Kondo resonances and
find that it varies continuously in the range between and 15.Comment: 2 pages, 2 figure
- âŠ