3,642 research outputs found

    Resonant and inelastic Andreev tunneling observed on a carbon nanotube quantum dot

    Full text link
    We report the observation of two fundamental sub-gap transport processes through a quantum dot (QD) with a superconducting contact. The device consists of a carbon nanotube contacted by a Nb superconducting and a normal metal contact. First, we find a single resonance with position, shape and amplitude consistent with the theoretically predicted resonant Andreev tunneling (AT) through a single QD level. Second, we observe a series of discrete replicas of resonant AT at a separation of ∌145 Ό\sim145\,\mueV, with a gate, bias and temperature dependence characteristic for boson-assisted, inelastic AT, in which energy is exchanged between a bosonic bath and the electrons. The magnetic field dependence of the replica's amplitudes and energies suggest that two different bosons couple to the tunnel process.Comment: 5 pages + 9 pages supplementary materia

    Andreev bound states probed in three-terminal quantum dots

    Get PDF
    We demonstrate several new electron transport phenomena mediated by Andreev bound states (ABSs) that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state transition S-QD systems can occur. We ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process called excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel mechanism called resonant ABS tunneling. In the latter, electrons are transferred via the ABS without creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the finite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.Comment: 15 pages, 16 figure

    Gate-tunable split Kondo effect in a carbon nanotube quantum dot

    Get PDF
    We show a detailed investigation of the split Kondo effect in a carbon nanotube quantum dot with multiple gate electrodes. It is found that the splitting decreases for increasing magnetic field, to result in a recovered zero-bias Kondo resonance at finite magnetic field. Surprisingly, in the same charge state, but under different gate-configurations, the splitting does not disappear for any value of the magnetic field, but we observe an avoided crossing of two high-conductance lines. We think that our observations can be understood in terms of a two-impurity Kondo effect with two spins coupled antiferromagnetically. The exchange coupling between the two spins can be influenced by a local gate, and the non-recovery of the Kondo resonance for certain gate configurations is explained by the existence of a small antisymmetric contribution to the exchange interaction between the two spins.Comment: 12 pages, 4 figures, published versio

    Electrical Spin Injection in Multi-Wall carbon NanoTubes with transparent ferromagnetic contacts

    Full text link
    We report on electrical spin injection measurements on MWNTs . We use a ferromagnetic alloy Pd1−x_{1-x}Nix_{x} with x ≈\approx 0.7 which allows to obtain devices with resistances as low as 5.6 kΩk\Omega at 300 KK. The yield of device resistances below 100 kΩk\Omega, at 300 KK, is around 50%. We measure at 2 KK a hysteretic magneto-resistance due to the magnetization reversal of the ferromagnetic leads. The relative difference between the resistance in the antiparallel (AP) orientation and the parallel (P) orientation is about 2%.Comment: submitted to APL version without figures version with figures available on http://www.unibas.ch/phys-meso

    gg-factor anisotropy in nanowire-based InAs quantum dots

    Full text link
    The determination and control of the electron gg-factor in semiconductor quantum dots (QDs) are fundamental prerequisites in modern concepts of spintronics and spin-based quantum computation. We study the dependence of the gg-factor on the orientation of an external magnetic field in quantum dots (QDs) formed between two metallic contacts on stacking fault free InAs nanowires. We extract the gg-factor from the splitting of Kondo resonances and find that it varies continuously in the range between ∣g∗∣=5|g^*| = 5 and 15.Comment: 2 pages, 2 figure
    • 

    corecore