219 research outputs found

    Covariant boost and structure functions of baryons in Gross-Neveu models

    Full text link
    Baryons in the large N limit of two-dimensional Gross-Neveu models are reconsidered. The time-dependent Dirac-Hartree-Fock approach is used to boost a baryon to any inertial frame and shown to yield the covariant energy-momentum relation. Momentum distributions are computed exactly in arbitrary frames and used to interpolate between the rest frame and the infinite momentum frame, where they are related to structure functions. Effects from the Dirac sea depend sensitively on the occupation fraction of the valence level and the bare fermion mass and do not vanish at infinite momentum. In the case of the kink baryon, they even lead to divergent quark and antiquark structure functions at x=0.Comment: 13 pages, 12 figures; v2: minor correction

    How to get from imaginary to real chemical potential

    Get PDF
    Using the exactly solvable Gross-Neveu model as theoretical laboratory, we analyse in detail the relationship between a relativistic quantum field theory at real and imaginary chemical potential. We find that one can retrieve the full information about the phase diagram of the theory from an imaginary chemical potential calculation. The prerequisite is to evaluate and analytically continue the effective potential for the chiral order parameter, rather than thermodynamic observables or phase boundaries. In the case of an inhomogeneous phase, one needs to compute the full effective action, a functional of the space-dependent order parameter, at imaginary chemical potential.Comment: revtex, 9 pages, 10 figures; v2: add more references, modify concluding sectio

    From non-degenerate conducting polymers to dense matter in the massive Gross-Neveu model

    Full text link
    Using results from the theory of non-degenerate conducting polymers like cis-polyacetylene, we generalize our previous work on dense baryonic matter and the soliton crystal in the massless Gross-Neveu model to finite bare fermion mass. In the large N limit, the exact crystal ground state can be constructed analytically, in close analogy to the bipolaron lattice in polymers. These findings are contrasted to the standard scenario with homogeneous phases only and a first order phase transition at a critical chemical potential.Comment: 12 pages, 7 figures, revtex; v2: improved readability, following advice of PRD referee; accepted for publicatio

    Universal point contact resistance between thin-film superconductors

    Get PDF
    A system comprising two superconducting thin films connected by a point contact is considered. The contact resistance is calculated as a function of temperature and film geometry, and is found to vanish rapidly with temperature, according to a universal, nearly activated form, becoming strictly zero only at zero temperature. At the lowest temperatures, the activation barrier is set primarily by the superfluid stiffness in the films, and displays only a weak (i.e., logarithmic) temperature dependence. The Josephson effect is thus destroyed, albeit only weakly, as a consequence of the power-law-correlated superconducting fluctuations present in the films below the Berezinskii-Kosterlitz-Thouless transition temperature. The behavior of the resistance is discussed, both in various limiting regimes and as it crosses over between these regimes. Details are presented of a minimal model of the films and the contact, and of the calculation of the resistance. A formulation in terms of quantum phase-slip events is employed, which is natural and effective in the limit of a good contact. However, it is also shown to be effective even when the contact is poor and is, indeed, indispensable, as the system always behaves as if it were in the good-contact limit at low enough temperature. A simple mechanical analogy is introduced to provide some heuristic understanding of the nearly-activated temperature dependence of the resistance. Prospects for experimental tests of the predicted behavior are discussed, and numerical estimates relevant to anticipated experimental settings are provided.Comment: 29 pages (single column format), 7 figure

    Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock

    Full text link
    The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition. Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a function of fermion mass, chemical potential and temperature and compared with the one of the discrete chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero temperature for various densities and fermion masses.Comment: 12 pages, 16 figure

    Revised Phase Diagram of the Gross-Neveu Model

    Get PDF
    We confirm earlier hints that the conventional phase diagram of the discrete chiral Gross-Neveu model in the large N limit is deficient at non-zero chemical potential. We present the corrected phase diagram constructed in mean field theory. It has three different phases, including a kink-antikink crystal phase. All transitions are second order. The driving mechanism for the new structure of baryonic matter in the Gross-Neveu model is an Overhauser type instability with gap formation at the Fermi surface.Comment: Revtex, 12 pages, 15 figures; v2: Axis labelling in Fig. 9 correcte

    ADCY5 gene expression in adipose tissue is related to obesity in men and mice

    Get PDF
    Genome wide association studies revealed an association of the single nucleotide polymorphism rs11708067 within the ADCY5 gene—encoding adenylate cyclase 5—with increased type 2 diabetes (T2D) risk and higher fasting glucose. However, it remains unclear whether the association between ADCY5 variants and glycemic traits may involve adipose tissue (AT) related mechanisms. We therefore tested the hypothesis that ADCY5 mRNA expression in human and mouse AT is related to obesity, fat distribution, T2D in humans and high fat diet (HFD) in mice. We measured ADCY5 mRNA expression in paired samples of visceral and subcutaneous adipose tissue from 244 individuals with a wide range of body weight and parameters of hyperglycemia, which have been genotyped for rs11708067. In addition, AT ADCY5 mRNA was assessed in C57BL/6NTac which underwent a 10 weeks standard chow (n = 6) or high fat diet (HFD, n = 6). In humans, visceral ADCY5 expression is significantly higher in obese compared to lean individuals. ADCY5 expression correlates with BMI, body fat mass, circulating leptin, fat distribution, waist and hip circumference, but not with fasting plasma glucose and HbA1c. Adcy5 expression in mouse AT is significantly higher after a HFD compared to chow (p<0.05). Importantly, rs11708067 is not associated with ADCY5 mRNA expression levels in either fat depot in any of the genetic models tested. Our results suggest that changes in AT ADCY5 expression are related to obesity and fat distribution, but not with impaired glucose metabolism and T2D. However, altered ADCY5 expression in AT does not seem to be the mechanism underlying the association between rs11708067 and increased T2D risk

    Circulating cell adhesion molecules in metabolically healthy obesity

    Get PDF
    Background/Objectives People with metabolically healthy obesity (MHO) may still have an increased risk for cardiovascular mortality compared to metabolically healthy lean (MHL) individuals. However, the mechanisms linking obesity to cardiovascular diseases are not entirely understood. We therefore tested the hypothesis that circulating cell adhesion molecules (CAMs) are higher in MHO compared to MHL individuals. Subjects/Methods Serum concentrations of soluble intercellular adhesion molecule-1 (sICAM-1), soluble vascular adhesion molecule-1 (sVCAM-1), E-selectin and P-selectin were measured in age- and sex-matched groups of MHL (n = 32), MHO categorized into BMI-matched insulin sensitive (IS, n = 32) or insulin resistant (IR) obesity (n = 32) and people with metabolically unhealthy obesity (MUO, n = 32). Results Indeed, individuals with MHO have significantly higher sICAM-1, E-selectin, and P-selectin serum concentrations compared to MHL people. However, these CAMs are still significantly lower in IS compared to IR MHO. There was no difference between the groups in sVCAM-1 serum concentrations. Compared to all other groups, circulating adhesion molecules were significantly higher in individuals with MUO. Conclusions These findings suggest that obesity-related increased cardiovascular risk is reflected and may be mediated by significantly higher CAMs. The mechanisms causing elevated adhesion molecules even in the absence of overt cardio-metabolic risk factors and whether circulating CAMs could predict cardiovascular events need to be explored

    No First-Order Phase Transition in the Gross-Neveu Model?

    Full text link
    Within a variational calculation we investigate the role of baryons for the structure of dense matter in the Gross-Neveu model. We construct a trial ground state at finite baryon density which breaks translational invariance. Its scalar potential interpolates between widely spaced kinks and antikinks at low density and the value zero at infinite density. Its energy is lower than the one of the standard Fermi gas at all densities considered. This suggests that the discrete gamma_5 symmetry of the Gross-Neveu model does not get restored in a first order phase transition at finite density, at variance with common wisdom.Comment: 16 pages, 7 figures, LaTe
    • …
    corecore