117 research outputs found

    Deformations of coisotropic submanifolds for fibrewise entire Poisson structures

    Get PDF
    We show that deformations of a coisotropic submanifold inside a fibrewise entire Poisson manifold are controlled by the L∞L_\infty-algebra introduced by Oh-Park (for symplectic manifolds) and Cattaneo-Felder. In the symplectic case, we recover results previously obtained by Oh-Park. Moreover we consider the extended deformation problem and prove its obstructedness

    Interaction and dephasing of center-of-mass quantized excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells

    Get PDF
    We investigate the interaction and dephasing of the excitons in wide ZnSe/Zn0.94Mg0.06Se quantum wells by spectrally resolved, femtosecond four-wave mixing (FWM). Polarization-dependent measurements indicate that excitation-induced dephasing is the dominant FWM process. The biexcitons of the center-of-mass quantized heavy and light hole excitons are observed, showing binding energies of 3.5 meV. We determine the exciton scattering cross sections with incoherent and coherent excitons. The coherent cross section is found to be larger than the incoherent cross section, which is attributed to a stronger Pauli repulsion for coherent excitons. The exciton interaction rates with acoustic and optical phonons are deduced by their temperature dependencies. The acoustic-phonon scattering is found to be strongly reduced in the investigated wide wells due to the reduced accessible phonon wave vector

    Analogue of cosmological particle creation in an ion trap

    Full text link
    We study phonons in a dynamical chain of ions confined by a trap with a time-dependent (axial) potential strength and demonstrate that they behave in the same way as quantum fields in an expanding/contracting universe. Based on this analogy, we present a scheme for the detection of the analogue of cosmological particle creation which should be feasible with present-day technology. In order to test the quantum nature of the particle creation mechanism and to distinguish it from classical effects such as heating, we propose to measure the two-phonon amplitude via the 2nd2^{\rm nd} red side-band and to compare it with the one-phonon amplitude (1st1^{\rm st} red side-band). PACS: 04.62.+v, 98.80.-k, 42.50.Vk, 32.80.Pj.Comment: 4 pages, 2 figure

    BFV-complex and higher homotopy structures

    Get PDF
    We present a connection between the BFV-complex (abbreviation for Batalin-Fradkin-Vilkovisky complex) and the so-called strong homotopy Lie algebroid associated to a coisotropic submanifold of a Poisson manifold. We prove that the latter structure can be derived from the BFV-complex by means of homotopy transfer along contractions. Consequently the BFV-complex and the strong homotopy Lie algebroid structure are L∞L_{\infty} quasi-isomorphic and control the same formal deformation problem. However there is a gap between the non-formal information encoded in the BFV-complex and in the strong homotopy Lie algebroid respectively. We prove that there is a one-to-one correspondence between coisotropic submanifolds given by graphs of sections and equivalence classes of normalized Maurer-Cartan elemens of the BFV-complex. This does not hold if one uses the strong homotopy Lie algebroid instead.Comment: 50 pages, 6 figures; version 4 is heavily revised and extende

    Real-time flow MRI of the aorta at a resolution of 40 msec.

    Get PDF
    PURPOSE: To evaluate a novel real-time phase-contrast magnetic resonance imaging (MRI) technique for the assessment of through-plane flow in the ascending aorta. MATERIALS AND METHODS: Real-time MRI was based on a radial fast low-angle shot (FLASH) sequence with about 30-fold undersampling and image reconstruction by regularized nonlinear inversion. Phase-contrast maps were obtained from two (interleaved or sequential) acquisitions with and without a bipolar velocity-encoding gradient. Blood flow in the ascending aorta was studied in 10 healthy volunteers at 3 T by both real-time MRI (15 sec during free breathing) and electrocardiogram (ECG)-synchronized cine MRI (with and without breath holding). Flow velocities and stroke volumes were evaluated using standard postprocessing software. RESULTS: The total acquisition time for a pair of phase-contrast images was 40.0 msec (TR/TE=2.86/1.93 msec, 10° flip angle, 7 spokes per image) for a nominal in-plane resolution of 1.3 mm and a section thickness of 6 mm. Quantitative evaluations of spatially averaged flow velocities and stroke volumes were comparable for real-time and cine methods when real-time MRI data were averaged across heartbeats. For individual heartbeats real-time phase-contrast MRI resulted in higher peak velocities for values above 120 cm s(-1) . CONCLUSION: Real-time phase-contrast MRI of blood flow in the human aorta yields functional parameters for individual heartbeats. When averaged across heartbeats real-time flow velocities and stroke volumes are comparable to values obtained by conventional cine MRI

    Active laser frequency stabilization using neutral praseodymium (Pr)

    Full text link
    We present a new possibility for the active frequency stabilization of a laser using transitions in neutral praseodymium. Because of its five outer electrons, this element shows a high density of energy levels leading to an extremely line-rich excitation spectrum with more than 25000 known spectral lines ranging from the UV to the infrared. We demonstrate the active frequency stabilization of a diode laser on several praseodymium lines between 1105 and 1123 nm. The excitation signals were recorded in a hollow cathode lamp and observed via laser-induced fluorescence. These signals are strong enough to lock the diode laser onto most of the lines by using standard laser locking techniques. In this way, the frequency drifts of the unlocked laser of more than 30 MHz/h were eliminated and the laser frequency stabilized to within 1.4(1) MHz for averaging times >0.2 s. Frequency quadrupling the stabilized diode laser can produce frequency-stable UV-light in the range from 276 to 281 nm. In particular, using a strong hyperfine component of the praseodymium excitation line E = 16 502.616_7/2 cm^-1 -> E' = 25 442.742_9/2 cm^-1 at lambda = 1118.5397(4) nm makes it possible - after frequency quadruplication - to produce laser radiation at lambda/4 = 279.6349(1) nm, which can be used to excite the D2 line in Mg^+.Comment: 10 pages, 14 figure

    Trapped Rydberg Ions: From Spin Chains to Fast Quantum Gates

    Full text link
    We study the dynamics of Rydberg ions trapped in a linear Paul trap, and discuss the properties of ionic Rydberg states in the presence of the static and time-dependent electric fields constituting the trap. The interactions in a system of many ions are investigated and coupled equations of the internal electronic states and the external oscillator modes of a linear ion chain are derived. We show that strong dipole-dipole interactions among the ions can be achieved by microwave dressing fields. Using low-angular momentum states with large quantum defect the internal dynamics can be mapped onto an effective spin model of a pair of dressed Rydberg states that describes the dynamics of Rydberg excitations in the ion crystal. We demonstrate that excitation transfer through the ion chain can be achieved on a nanosecond timescale and discuss the implementation of a fast two-qubit gate in the ion chain.Comment: 26 pages, 9 figure

    Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    Get PDF
    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical Bloch equations including local-field effects, excitation-induced dephasing, and biexciton formation. The investigations show that, for copolarized input fields, excitation-induced dephasing is the dominant FWM mechanism, followed by the conventional density-grating FWM process, biexcitonic contributions, and local-field effects. For cross-linear polarized input fields the excitation-induced dephasing mechanism is canceled so that the conventional density-grating FWM process and biexcitonic contributions are dominating

    Targeted protein degradation via intramolecular bivalent glues

    Get PDF
    Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)—bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target 1–4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change ‘glues’ BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target–ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4–IBG1–DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.</p

    Targeted protein degradation via intramolecular bivalent glues

    Get PDF
    Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)—bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target 1–4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change ‘glues’ BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target–ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4–IBG1–DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.</p
    • …
    corecore