781 research outputs found

    Improvement in B1+-homogeneity of 3T cardiac MRI in swine with dual-source parallel RF excitation

    Get PDF

    Are spectroscopic factors from transfer reactions consistent with asymptotic normalisation coefficients?

    Full text link
    It is extremely important to devise a reliable method to extract spectroscopic factors from transfer cross sections. We analyse the standard DWBA procedure and combine it with the asymptotic normalisation coefficient, extracted from an independent data set. We find that the single particle parameters used in the past generate inconsistent asymptotic normalization coefficients. In order to obtain a consistent spectroscopic factor, non-standard parameters for the single particle overlap functions can be used but, as a consequence, often reduced spectroscopic strengths emerge. Different choices of optical potentials and higher order effects in the reaction model are also studied. Our test cases consist of: 14^{14}C(d,p)15^{15}C(g.s.) at Edlab=14E_d^{lab}=14 MeV, 16^{16}O(d,p)17^{17}O(g.s.) at Edlab=15E_d^{lab}=15 MeV and 40^{40}Ca(d,p)41^{41}Ca(g.s.) at Edlab=11E_d^{lab}=11 MeV. We underline the importance of performing experiments specifically designed to extract ANCs for these systems.Comment: 15 pages, 12 figures, Phys. Rev. C (in press

    Global precipitation response to changing forcings since 1870

    Get PDF
    Predicting and adapting to changes in the hydrological cycle is one of the major challenges for the 21st century. To better estimate how it will respond to future changes in climate forcings, it is crucial to understand how the hydrological cycle has evolved in the past and why. In our study, we use an atmospheric global climate model with prescribed sea surface temperatures (SSTs) to investigate how, in the period 1870–2005, changing climate forcings have affected the global land temperature and precipitation. We show that between 1870 and 2005, prescribed SSTs (encapsulating other forcings and internal variability) determine the decadal and interannual variabilities of the global land temperature and precipitation, mostly via their influence in the tropics (25° S–25° N). In addition, using simulations with prescribed SSTs and considering the atmospheric response alone, we find that between 1930 and 2005 increasing aerosol emissions have reduced the global land temperature and precipitation by up to 0.4 °C and 30 mm yr<sup>−1</sup>, respectively, and that between about 1950 and 2005 increasing greenhouse gas concentrations have increased them by up to 0.25 °C and 10 mm yr<sup>−1</sup>, respectively. Finally, we suggest that between about 1950 and 1970, increasing aerosol emissions had a larger impact on the hydrological cycle than increasing greenhouse gas concentrations

    Direct in vitro comparison of six three-dimensional positive contrast methods for susceptibility marker imaging.

    Get PDF
    PURPOSE: To compare different techniques for positive contrast imaging of susceptibility markers with MRI for three-dimensional visualization. As several different techniques have been reported, the choice of the suitable method depends on its properties with regard to the amount of positive contrast and the desired background suppression, as well as other imaging constraints needed for a specific application. MATERIALS AND METHODS: Six different positive contrast techniques are investigated for their ability to image at 3 Tesla a single susceptibility marker in vitro. The white marker method (WM), susceptibility gradient mapping (SGM), inversion recovery with on-resonant water suppression (IRON), frequency selective excitation (FSX), fast low flip-angle positive contrast SSFP (FLAPS), and iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) were implemented and investigated. RESULTS: The different methods were compared with respect to the volume of positive contrast, the product of volume and signal intensity, imaging time, and the level of background suppression. Quantitative results are provided, and strengths and weaknesses of the different approaches are discussed. CONCLUSION: The appropriate choice of positive contrast imaging technique depends on the desired level of background suppression, acquisition speed, and robustness against artifacts, for which in vitro comparative data are now available

    Robust volume-targeted balanced steady-state free-precession coronary magnetic resonance angiography in a breathhold at 3.0 Tesla: a reproducibility study.

    Get PDF
    BACKGROUND: Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS: A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS: The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS: The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period

    Temperature-dependent benefits of bacterial exposure in embryonic development of Daphnia magna resting eggs

    Get PDF
    The environments in which animals develop and evolve are profoundly shaped by bacteria, which affect animals both indirectly through their role in biogeochemical processes and directly through antagonistic or beneficial interactions. The outcomes of these activities can differ according to environmental context. In a series of laboratory experiments with diapausing eggs of the water flea Daphnia magna, we manipulated two environmental parameters, temperature and presence of bacteria, and examined their effect on development. At elevated temperatures (≥ 26 °C), resting eggs developing without live bacteria had reduced hatching success and correspondingly higher rates of severe morphological abnormalities compared with eggs with bacteria in their environment. The beneficial effect of bacteria was strongly reduced at 20 °C. Neither temperature nor the presence of bacteria affected directly developing parthenogenetic eggs. The mechanistic basis of this effect of bacteria on development is unclear, but these results highlight the complex interplay of biotic and abiotic factors influencing animal development after diapause

    Bayesian multi-model projection of climate: bias assumptions and interannual variability

    Get PDF
    Current climate change projections are based on comprehensive multi-model ensembles of global and regional climate simulations. Application of this information to impact studies requires a combined probabilistic estimate taking into account the different models and their performance under current climatic conditions. Here we present a Bayesian statistical model for the distribution of seasonal mean surface temperatures for control and scenario periods. The model combines observational data for the control period with the output of regional climate models (RCMs) driven by different global climate models (GCMs). The proposed Bayesian methodology addresses seasonal mean temperatures and considers both changes in mean temperature and interannual variability. In addition, unlike previous studies, our methodology explicitly considers model biases that are allowed to be time-dependent (i.e. change between control and scenario period). More specifically, the model considers additive and multiplicative model biases for each RCM and introduces two plausible assumptions ("constant bias” and "constant relationship”) about extrapolating the biases from the control to the scenario period. The resulting identifiability problem is resolved by using informative priors for the bias changes. A sensitivity analysis illustrates the role of the informative prior. As an example, we present results for Alpine winter and summer temperatures for control (1961-1990) and scenario periods (2071-2100) under the SRES A2 greenhouse gas scenario. For winter, both bias assumptions yield a comparable mean warming of 3.5-3.6°C. For summer, the two different assumptions have a strong influence on the probabilistic prediction of mean warming, which amounts to 5.4°C and 3.4°C for the "constant bias” and "constant relation” assumptions, respectively. Analysis shows that the underlying reason for this large uncertainty is due to the overestimation of summer interannual variability in all models considered. Our results show the necessity to consider potential bias changes when projecting climate under an emission scenario. Further work is needed to determine how bias information can be exploited for this tas

    Spatially selective implementation of the adiabatic T2 prep sequence for magnetic resonance angiography of the coronary arteries.

    Get PDF
    In coronary magnetic resonance angiography, a magnetization-preparation scheme for T2 -weighting (T2 Prep) is widely used to enhance contrast between the coronary blood-pool and the myocardium. This prepulse is commonly applied without spatial selection to minimize flow sensitivity, but the nonselective implementation results in a reduced magnetization of the in-flowing blood and a related penalty in signal-to-noise ratio. It is hypothesized that a spatially selective T2 Prep would leave the magnetization of blood outside the T2 Prep volume unaffected and thereby lower the signal-to-noise ratio penalty. To test this hypothesis, a spatially selective T2 Prep was implemented where the user could freely adjust angulation and position of the T2 Prep slab to avoid covering the ventricular blood-pool and saturating the in-flowing spins. A time gap of 150 ms was further added between the T2 Prep and other prepulses to allow for in-flow of a larger volume of unsaturated spins. Consistent with numerical simulation, the spatially selective T2 Prep increased in vivo human coronary artery signal-to-noise ratio (42.3 ± 2.9 vs. 31.4 ± 2.2, n = 22, P < 0.0001) and contrast-to-noise-ratio (18.6 ± 1.5 vs. 13.9 ± 1.2, P = 0.009) as compared to those of the nonselective T2 Prep. Additionally, a segmental analysis demonstrated that the spatially selective T2 Prep was most beneficial in proximal and mid segments where the in-flowing blood volume was largest compared to the distal segments. Magn Reson Med, 2013. © 2012 Wiley Periodicals, Inc

    NO x reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR

    Get PDF
    A DeNO x demonstration system for a diesel engine used in construction machineries and mobile cranes was setup. In preliminary experiments various extruded and coated SCR catalysts were evaluated with and without oxidizing pre-catalyst. The data from stationary tests with two selected catalysts were used to establish various model-based control algorithms for the optimum dosage of urea in the ESC and ETC. A NO x conversion of >93% at <10ppm average ammonia slip could be achieved at a converter-to-swept volume ratio of <2.
    corecore