256 research outputs found

    Shot noise of large charge quanta in superconductor/semiconductor/superconductor junctions

    Get PDF
    We have found experimentally that the noise of ballistic electron transport in a superconductor/semiconductor/superconductor junction is enhanced relative to the value given by the general relation, S_V=2eIR^2coth(eV/2kT), for two voltage regions in which this expression reduces to its thermal and shot noise limits. The noise enhancement is explained by the presence of large charge quanta, with effective charge q*=(1+2Delta/eV)e, that generate a noise spectrum S_V=2q*IR^2, as predicted in Phys. Rev. Lett. 76, 3814 (1996). These charge quanta result from multiple Andreev reflections at each junction interface, which are also responsible for the subharmonic gap structure observed in the voltage dependence of the junction's conductance.Comment: 5 pages, 5 figures, submitted to Physical Review B as a Rapid Communication. v2 author name in reference corrected. v3 added references. v4 clarifications in the text and reference added thanks to C. Urbin

    Controlling spin in an electronic interferometer with spin-active interfaces

    Full text link
    We consider electronic current transport through a ballistic one-dimensional quantum wire connected to two ferromagnetic leads. We study the effects of the spin-dependence of interfacial phase shifts (SDIPS) acquired by electrons upon scattering at the boundaries of the wire. The SDIPS produces a spin splitting of the wire resonant energies which is tunable with the gate voltage and the angle between the ferromagnetic polarizations. This property could be used for manipulating spins. In particular, it leads to a giant magnetoresistance effect with a sign tunable with the gate voltage and the magnetic field applied to the wire.Comment: 5 pages, 3 figures. to be published in Europhysics Letter

    Weak antilocalization in a polarization-doped AlxGa1-xN/GaN heterostructure with single subband occupation

    Get PDF
    Spin-orbit scattering in a polarization-doped Al0.30Ga0.70N/GaN two-dimensional electron gas with one occupied subband is studied at low temperatures. At low magnetic fields weak antilocalization is observed, which proves that spin-orbit scattering occurs in the two-dimensional electron gas. From measurements at various temperatures the elastic scattering time tau(tr), the dephasing time tau(phi), and the spin-orbit scattering time tau(so) are extracted. Measurements in tilted magnetic fields were performed, in order to separate spin and orbital effects

    Doppler Shift in Andreev Reflection from a Moving Superconducting Condensate in Nb/InAs Josephson Junctions

    Get PDF
    We study narrow ballistic Josephson weak links in a InAs quantum wells contacted by Nb electrodes and find a dramatic magnetic-field suppression of the Andreev reflection amplitude, which occurs even for in-plane field orientation with essentially no magnetic flux through the junction. Our observations demonstrate the presence of a Doppler shift in the energy of the Andreev levels, which results from diamagnetic screening currents in the hybrid Nb/InAs-banks. The data for conductance, excess and critical currents can be consistently explained in terms of the sample geometry and the McMillan energy, characterizing the transparency of the Nb/InAs-interface.Comment: 4 pages, 5 figures, title modifie

    Andreev reflection at high magnetic fields: Evidence for electron and hole transport in edge states

    Get PDF
    We have studied magnetotransport in arrays of niobium filled grooves in an InAs/AlGaSb heterostructure. The critical field of up to 2.6 T permits to enter the quantum Hall regime. In the superconducting state, we observe strong magnetoresistance oscillations, whose amplitude exceeds the Shubnikov-de Haas oscillations by a factor of about two, when normalized to the background. Additionally, we find that above a geometry-dependent magnetic field value the sample in the superconducting state has a higher longitudinal resistance than in the normal state. Both observations can be explained with edge channels populated with electrons and Andreev reflected holes.Comment: accepted for Phys Rev Lett, some changes to tex

    Особенности химизма блеклых руд участка ЭМИ Светлинского эпитермального рудного поля (Хабаровский край)

    Get PDF
    We experimentally studied the Josephson supercurrent in Nb/InN-nanowire/Nb junctions. Large critical currents up to 5.7 μA have been achieved, which proves the good coupling of the nanowire to the superconductor. The effect of a magnetic field perpendicular to the plane of the Josephson junction on the critical current has been studied. The observed monotonous decrease in the critical current with magnetic field is explained by the magnetic pair-breaking effect in planar Josephson junctions of ultra-narrow width [J. C. Cuevas and F. S. Bergeret, Phys. Rev. Lett. 99, 217002 (2007)]

    Longitudinal photocurrent spectroscopy of a single GaAs/AlGaAs v-groove quantum wire

    Get PDF
    Modulation-doped GaAs v-groove quantum wires (QWRs) have been fabricated with novel electrical contacts made to two-dimensional electron-gas (2DEG) reservoirs. Here, we present longitudinal photocurrent (photoconductivity/PC) spectroscopy measurements of a single QWR. We clearly observe conductance in the ground-state one-dimensional subbands; in addition, a highly temperature-dependent response is seen from other structures within the v-groove. The latter phenomenon is attributed to the effects of structural topography and localization on carrier relaxation. The results of power-dependent PC measurements suggest that the QWR behaves as a series of weakly interacting localized states, at low temperatures

    Coherent current transport in wide ballistic Josephson junctions

    Get PDF
    We present an experimental and theoretical investigation of coherent current transport in wide ballistic superconductor-two dimensional electron gas-superconductor junctions. It is found experimentally that upon increasing the junction length, the subharmonic gap structure in the current-voltage characteristics is shifted to lower voltages, and the excess current at voltages much larger than the superconducting gap decreases. Applying a theory of coherent multiple Andreev reflection, we show that these observations can be explained in terms of transport through Andreev resonances.Comment: 4 pages, 4 figure
    corecore