7,420 research outputs found

    Femtosecond Coherent Control of Spin with Light in (Ga,Mn)As ferromagnets

    Full text link
    Using density matrix equations of motion, we predict a femtosecond collective spin tilt triggered by nonlinear, near--ultraviolet (∌\sim3eV), coherent photoexcitation of (Ga,Mn)As ferromagnetic semiconductors with linearly polarized light. This dynamics results from carrier coherences and nonthermal populations excited in the \{111\} equivalent directions of the Brillouin zone and triggers a subsequent uniform precession. We predict nonthermal magnetization control by tuning the laser frequency and polarization direction. Our mechanism explains recent ultrafast pump--probe experiments.Comment: 4 pages, 3 figures, published in Physical Review Letter

    Asteroid flux towards circumprimary habitable zones in binary star systems: I. Statistical Overview

    Full text link
    So far, multiple stellar systems harbor more than 130 extra solar planets. Dynamical simulations show that the outcome of planetary formation process can lead to various planetary architecture (i.e. location, size, mass and water content) when the star system is single or double. In the late phase of planetary formation, when embryo-sized objects dominate the inner region of the system, asteroids are also present and can provide additional material for objects inside the habitable zone (hereafter HZ). In this study, we make a comparison of several binary star systems and their efficiency to move icy asteroids from beyond the snow-line into orbits crossing the HZ. We modeled a belt of 10000 asteroids (remnants from the late phase of planetary formation process) beyond the snow-line. The planetesimals are placed randomly around the primary star and move under the gravitational influence of the two stars and a gas giant. As the planetesimals do not interact with each other, we divided the belt into 100 subrings which were separately integrated. In this statistical study, several double star configurations with a G-type star as primary are investigated. Our results show that small bodies also participate in bearing a non-negligible amount of water to the HZ. The proximity of a companion moving on an eccentric orbit increases the flux of asteroids to the HZ, which could result into a more efficient water transport on a short timescale, causing a heavy bombardment. In contrast to asteroids moving under the gravitational perturbations of one G-type star and a gas giant, we show that the presence of a companion star can not only favor a faster depletion of our disk of planetesimals but can also bring 4 -- 5 times more water into the whole HZ.Comment: Accepted for publication in A&

    Observation of inter-Landau-level quantum coherence in semiconductor quantum wells

    Full text link
    Using three-pulse four-wave-mixing femtosecond spectroscopy, we excite a non-radiative coherence between the discrete Landau levels of an undoped quantum well and study its dynamics. We observe quantum beats that reflect the time evolution of the coherence between the two lowest Landau level magnetoexcitons. We interpret our observations using a many-body theory and find that the inter Landau level coherence decays with a new time constant, substantially longer than the corresponding interband magnetoexciton dephasing times. Our results indicate a new intraband excitation dynamics that cannot be described in terms of uncorrelated interband excitations.Comment: 5 pages, 5 figures, to appear in Phys. Rev. B Rapid Communication

    On Color Superconductivity in External Magnetic Field

    Get PDF
    We study color superconductivity in external magnetic field. We discuss the reason why the mixing angles in color-flavor locked (CFL) and two-flavor superconductivity (2SC) phases are different despite the fact that the CFL gap goes to the 2SC gap for ms→∞m_s \to \infty. Although flavor symmetry is explicitly broken in external magnetic field, we show that all values of gaps in their coset spaces of possible solutions in the CFL phase are equivalent in external magnetic field.Comment: 12 pages, LaTe

    A Diagrammatic Approach to Crystalline Color Superconductivity

    Get PDF
    We present a derivation of the gap equation for the crystalline color superconducting phase of QCD which begins from a one-loop Schwinger-Dyson equation written using a Nambu-Gorkov propagator modified to describe the spatially varying condensate. Some aspects of previous variational calculations become more straightforward when rephrased beginning from a diagrammatic starting point. This derivation also provides a natural base from which to generalize the analysis to include quark masses, nontrivial crystal structures, gluon propagation at asymptotic densities, and nonzero temperature. In this paper, we analyze the effects of nonzero temperature on the crystalline color superconducting phase.Comment: 15 pages. 2 eps figure

    Instantons and Scalar Multiquark States: From Small to Large N_c

    Full text link
    We study scalar quark-anti-quark and two-quark-two-anti-quark correlation functions in the instanton liquid model. We show that the instanton liquid supports a light scalar-isoscalar (sigma) meson, and that this state is strongly coupled to both (qˉq)(\bar{q}q) and (qˉq)2(\bar{q}q)^2. The scalar-isovector a0a_0 meson, on the other hand, is heavy. We also show that these properties are specific to QCD with three colors. In the large NcN_c limit the scalar-isoscalar meson is not light, and it is mainly coupled to (qˉq)(\bar{q}q).Comment: 24 page

    Pyrochlore S=1/2 Heisenberg antiferromagnet at finite temperature

    Get PDF
    We use a combination of three computational methods to investigate the notoriously difficult frustrated three-dimensional pyrochlore S = 1/2 aquantum antiferromagnet, at finite temperature T : canonical typicality for a finite cluster of 2 x 2 x 2 unit cells (i.e., 32 sites), a finite-T matrix product state method on a larger cluster with 48 sites, and the numerical linked cluster expansion (NLCE) using clusters up to 25 lattice sites, including nontrivial hexagonal and octagonal loops. We calculate thermodynamic properties (energy, specific heat capacity, entropy, susceptibility, magnetization) and the static structure factor. We find a pronounced maximum in the specific heat at T = 0.57J, which is stable across finite size clusters and converged in the series expansion. At T approximate to 0.25J (the limit of convergence of our method), the residual entropy per spin is 0.47k(B) In 2, which is relatively large compared to other frustrated models at this temperature. We also observe a nonmonotonic dependence on T of the magnetization at low magnetic fields, reflecting the dominantly nonmagnetic character of the low-energy states. A detailed comparison of our results to measurements for the S = 1 material NaCaNi2F7 yields a rough agreement of the functional form of the specific heat maximum, which in turn differs from the sharper maximum of the heat capacity of the spin ice material Dy2Ti2O7

    Enforced Electrical Neutrality of the Color-Flavor Locked Phase

    Get PDF
    We demonstrate that quark matter in the color-flavor locked phase of QCD is rigorously electrically neutral, despite the unequal quark masses, and even in the presence of an electron chemical potential. As long as the strange quark mass and the electron chemical potential do not preclude the color-flavor locked phase, quark matter is automatically neutral. No electrons are required and none are admitted.Comment: 4 pages, revtex. v2: very minor changes only. v3: small clarifications; reference added; version to appear in Phys. Rev. Lett. v4, posted in 2008: typo in Eq. 14 correcte

    Possible Inversion Symmetry Breaking in the S=1/2 Pyrochlore Heisenberg Magnet

    Get PDF
    We address the ground-state properties of the long-standing and much-studied three-dimensional quantum spin liquid candidate, the S = 1/2 pyrochlore Heisenberg antiferromagnet. By using SU(2) density-matrix renormalization group (DMRG), we are able to access cluster sizes of up to 128 spins. Our most striking finding is a robust spontaneous inversion symmetry breaking, reflected in an energy density difference between the two sublattices of tetrahedra, familiar as a starting point of earlier perturbative treatments. We also determine the ground-state energy, E-0/N-sites = -0.490(6)J, by combining extrapolations of DMRG with those of a numerical linked cluster expansion. These findings suggest a scenario in which a finite-temperature spin liquid regime gives way to a symmetry-broken state at low temperatures

    Photoinduced melting of superconductivity in the high-Tc superconductor La2-xSrxCuO4 probed by time-resolved optical and THz techniques

    Full text link
    Dynamics of depletion and recovery of superconducting state in La2-xSrxCuO_4 thin films is investigated utilizing optical pump-probe and optical pump - THz probe techniques as a function of temperature and excitation fluence. The absorbed energy density required to suppress superconductivity is found to be about 8 times higher than the thermodynamically determined condensation energy density and nearly temperature independent between 4 and 25 K. These findings indicate that during the time when superconducting state suppression takes place (~0.7 ps), a large part (nearly 90%) of the energy is transferred to the phonons with energy lower than twice the maximum value of of the SC gap and only 10% is spent on Cooper pair breaking.Comment: 8 pages, 5 figure
    • 

    corecore