6,838 research outputs found

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Production of two ccˉc \bar c pairs in gluon-gluon scattering in high energy proton-proton collisions

    Full text link
    We calculate cross sections for gg→QQˉQQˉg g \to Q \bar Q Q \bar Q in the high-energy approximation in the mixed (longitudinal momentum fraction, impact parameter) and momentum space representations. Besides the total cross section as a function of subsystem energy also differential distributions (in quark rapidity, transverse momentum, QQQ Q, QQˉQ \bar Q invariant mass) are presented. The elementary cross section is used to calculate production of (ccˉ)(ccˉ)(c \bar c) (c \bar c) in single-parton scattering (SPS) in proton-proton collisions. We present integrated cross section as a function of proton-proton center of mass energy as well as differential distribution in M(ccˉ)(ccˉ)M_{(c \bar c)(c \bar c)}. The results are compared with corresponding results for double-parton scattering (DPS) discussed recently in the literature. We find that the considered SPS contribution to (ccˉ)(ccˉ)(c \bar c)(c \bar c) production is at high energy (s>\sqrt{s} > 5 TeV) much smaller than that for DPS contribution.Comment: 17 pages, 11 figure

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding

    Debye screening and Meissner effect in a three-flavor color superconductor

    Get PDF
    I compute the gluon self-energy in a color superconductor with three flavors of massless quarks, where condensation of Cooper pairs breaks the color and flavor SU(3)_c x U(3)_V x U(3)_A symmetry of QCD to the diagonal subgroup SU(3)_{c+V}. At zero temperature, all eight electric gluons obtain a Debye screening mass, and all eight magnetic gluons a Meissner mass. The Debye as well as the Meissner masses are found to be equal for the different gluon colors. These masses determine the coefficients of the kinetic terms in the effective theory for the low-energy degrees of freedom. Their values agree with those obtained by Son and Stephanov.Comment: 10 pages, 1 figure (eps

    On Color Superconductivity in External Magnetic Field

    Get PDF
    We study color superconductivity in external magnetic field. We discuss the reason why the mixing angles in color-flavor locked (CFL) and two-flavor superconductivity (2SC) phases are different despite the fact that the CFL gap goes to the 2SC gap for ms→∞m_s \to \infty. Although flavor symmetry is explicitly broken in external magnetic field, we show that all values of gaps in their coset spaces of possible solutions in the CFL phase are equivalent in external magnetic field.Comment: 12 pages, LaTe

    Phases of QCD at High Baryon Density

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss how the quark masses and chemical potentials determine the structure of the superfluid quark phase. We comment on the possibility of kaon condensation at very high baryon density and study the competition between superfluid, density wave, and chiral crystal phases at intermediate density.Comment: 15 pages. To appear in the proceedings of the ECT Workshop on Neutron Star Interiors, Trento, Italy, June 200

    Towards a more explicit account of the transformation: Reply to comments on “An integrative review of the enjoyment of sadness associated with music”

    Get PDF
    Our integrative framework for explaining the enjoyment of sadness associated with music sparked a delightful number (13) of commentaries which challenge, stimulate, strengthen and shape the ideas we initially put forward. Here we organize our response around five central themes brought up by several commentators. These relate to questions about (a) the nature of sad music, (b) whether music can induce genuine sadness, (c) details of the transformation, (d) music as a technology for emotion regulation, and (e) broader implications and extensions.nonPeerReviewe

    Glueballs and Instantons

    Get PDF
    We study correlation functions and Bethe Salpeter amplitudes for the scalar, the pseudoscalar and the tensor glueballs using an instanton-based model of the QCD vacuum. We consider both the pure gauge case and the situation for real QCD with two light quark flavors. We show that instantons lead to a strong modification of the correlation functions as compared to their perturbative behavior. In particular, we find a strong attractive force in the JCP=0++J^{CP}=0^{++} channel and repulsion in the 0+−0^{+-} channel. Due to the strong classical field of the instantons, these effects are much larger than the spin splittings observed in mesons made of quarks. The resulting masses, coupling constants and wave functions appear to be in agreement with lattice gauge simulations.Comment: revised version published in Phys. Rev. Let

    Impact inducted surface heating by planetesimals on early Mars

    Full text link
    We investigate the influence of impacts of large planetesimals and small planetary embryos on the early Martian surface on the hydrodynamic escape of an early steam atmosphere that is exposed to the high soft X-ray and EUV flux of the young Sun. Impact statistics in terms of number, masses, velocities, and angles of asteroid impacts onto the early Mars are determined via n-body integrations. Based on these statistics, smoothed particle hydrodynamics (SPH) simulations result in estimates of energy transfer into the planetary surface material and according surface heating. For the estimation of the atmospheric escape rates we applied a soft X-ray and EUV absorption model and a 1-D upper atmosphere hydrodynamic model to a magma ocean-related catastrophically outgassed steam atmosphere with surface pressure values of 52 bar H2O and 11 bar CO2. The estimated impact rates and energy deposition onto an early Martian surface can account for substantial heating. The energy influx and conversion rate into internal energy is most likely sufficient to keep a shallow magma ocean liquid for an extended period of time. Higher surface temperatures keep the outgassed steam atmosphere longer in vapor form and therefore enhance its escape to space within about 0.6 Myr after its formation.Comment: submitted to A&
    • 

    corecore