104 research outputs found

    Microenvironment in neuroblastoma: Isolation and characterization of tumor-derived mesenchymal stromal cells

    Get PDF
    Background: It has been proposed that mesenchymal stromal cells (MSCs) promote tumor progression by interacting with tumor cells and other stroma cells in the complex network of the tumor microenvironment. We characterized MSCs isolated and expanded from tumor tissues of pediatric patients diagnosed with neuroblastomas (NB-MSCs) to define interactions with the tumor microenvironment. Methods: Specimens were obtained from 7 pediatric patients diagnosed with neuroblastoma (NB). Morphology, immunophenotype, differentiation capacity, proliferative growth, expression of stemness and neural differentiation markers were evaluated. Moreover, the ability of cells to modulate the immune response, i.e. inhibition of phytohemagglutinin (PHA) activated peripheral blood mononuclear cells (PBMCs) and natural killer (NK) cytotoxic function, was examined. Gene expression profiles, known to be related to tumor cell stemness, Wnt pathway activation, epithelial-mesenchymal transition (EMT) and tumor metastasis were also evaluated. Healthy donor bone marrow-derived MSCs (BM-MSC) were employed as controls. Results: NB-MSCs presented the typical MSC morphology and phenotype. They showed a proliferative capacity superimposable to BM-MSCs. Stemness marker expression (Sox2, Nanog, Oct3/4) was comparable to BM-MSCs. NB-MSC in vitro osteogenic and chondrogenic differentiation was similar to BM-MSCs, but NB-MSCs lacked adipogenic differentiation capacity. NB-MSCs reached senescence phases at a median passage of P7 (range, P5-P13). NB-MSCs exhibited greater immunosuppressive capacity on activated T lymphocytes at a 1:2 (MSC: PBMC) ratio compared with BM-MSCs (p = 0.018). NK cytotoxic activity was not influenced by co-culture, either with BM-MSCs or NB-MSCs. Flow-cytometry cell cycle analysis showed that NB-MSCs had an increased number of cells in the G0-G1 phase compared to BM-MSCs. Transcriptomic profiling results indicated that NB-MSCs were enriched with EMT genes compared to BM-MSCs. Conclusions: We characterized the biological features, the immunomodulatory capacity and the gene expression profile of NB-MSCs. The NB-MSC gene expression profile and their functional properties suggest a potential role in promoting tumor escape, invasiveness and metastatic traits of NB cancer cells. A better understanding of the complex mechanisms underlying the interactions between NB cells and NB-derived MSCs should shed new light on potential novel therapeutic approaches

    A possible role of fzd10 delivering exosomes derived from colon cancers cell lines in inducing activation of epithelial–mesenchymal transition in normal colon epithelial cell line

    Get PDF
    Exosomes belong to the family of extracellular vesicles released by every type of cell both in normal and pathological conditions. Growing interest in studies indicates that extracellular vesicles, in particular, the fraction named exosomes containing lipids, proteins and nucleic acid, represent an efficient way to transfer functional cargoes between cells, thus combining all the other cell–cell interaction mechanisms known so far. Only a few decades ago, the involvement of exosomes in the carcinogenesis in different tissues was discovered, and very recently it was also observed how they carry and modulate the presence of Wnt pathway proteins, involved in the carcinogenesis of gastrointestinal tissues, such as Frizzled 10 protein (FZD10), a membrane receptor for Wnt. Here, we report the in vitro study on the capability of tumor-derived exosomes to induce neoplastic features in normal cells. Exosomes derived from two different colon cancer cell lines, namely the non-metastatic CaCo-2 and the metastatic SW620, were found to deliver, in both cases, FZD10, thus demonstrating the ability to reprogram normal colonic epithelial cell line (HCEC-1CT). Indeed, the acquisition of specific mesenchymal characteristics, such as migration capability and expression of FZD10 and markers of mesenchymal cells, was observed. The exosomes derived from the metastatic cell line, characterized by a level of FZD10 higher than the exosomes extracted from the non-metastatic cells, were also more efficient in stimulating EMT activation. The overall results suggest that FZD10, delivered by circulating tumor-derived exosomes, can play a relevant role in promoting the CRC carcinogenesis and propagation

    Effectiveness of a controlled 5-fu delivery based on fzd10 antibody-conjugated liposomes in colorectal cancer in vitro models

    Get PDF
    The use of controlled delivery therapy in colorectal cancer (CRC) reduces toxicity and side effects. Recently, we have suggested that the Frizzled 10 (FZD10) protein, a cell surface receptor belonging to the FZD protein family that is overexpressed in CRC cells, is a novel candidate for targeting and treatment of CRC. Here, the anticancer effect of novel immuno-liposomes loaded with 5-Fluorouracil (5-FU), decorated with an antibody against FZD10 (anti-FZD10/5-FU/LPs), was evaluated in vitro on two different CRC cell lines, namely metastatic CoLo-205 and nonmetastatic CaCo-2 cells, that were found to overexpress FZD10. The anti-FZD10/5-FU/LPs obtained were extensively characterized and their preclinical therapeutic efficacy was evaluated with the MTS cell proliferation assay based on reduction of tetrazolium compound, scratch test, Field Emission Scanning Electron Microscopes (FE-SEM) investigation and immunofluorescence analysis. The results highlighted that the cytotoxic activity of 5-FU was enhanced when encapsulated in the anti-FZD10 /5-FU/LPs at the lowest tested concentrations, as compared to the free 5-FU counterparts. The immuno-liposomes proposed herein possess a great potential for selective treatment of CRC because, in future clinical applications, they can be encapsulated in gastro-resistant capsules or suppositories for oral or rectal delivery, thereby successfully reaching the intestinal tract in a minimally invasive manner

    Flavonoid and non-flavonoid compounds of autumn royal and egnatia grape skin extracts affect membrane PUFA's profile and cell morphology in human colon cancer cell lines

    Get PDF
    Grapes contain many flavonoid and non-flavonoid compounds with anticancer effects. In this work we fully characterized the polyphenolic profile of two grape skin extracts (GSEs), Autumn Royal and Egnatia, and assessed their effects on Polyunsaturated Fatty Acid (PUFA) membrane levels of Caco2 and SW480 human colon cancer cell lines. Gene expression of 15-lipoxygenase-1 (15-LOX-1), and peroxisome proliferator-activated receptor gamma (PPAR-Îł), as well as cell morphology, were evaluated. The polyphenolic composition was analyzed by Ultra-High-Performance Liquid Chromatography/Quadrupole-Time of Flight mass spectrometry (UHPLC/QTOF) analysis. PUFA levels were evaluated by gas chromatography, and gene expression levels of 15-LOX-1 and PPAR-Îł were analyzed by real-time Polymerase Chain Reaction (PCR). Morphological cell changes caused by GSEs were identified by field emission scanning electron microscope (FE-SEM) and photomicrograph examination. We detected a different profile of flavonoid and non-flavonoid compounds in Autumn Royal and Egnatia GSEs. Cultured cells showed an increase of total PUFA levels mainly after treatment with Autumn Royal grape, and were richer in flavonoids when compared with the Egnatia variety. Both GSEs were able to affect 15-LOX-1 and PPAR-Îł gene expression and cell morphology. Our results highlighted a new antitumor mechanism of GSEs that involves membrane PUFAs and their downstream pathways

    Combined platelet-rich plasma and lipofilling treatment provides great improvement in facial skin-induced lesion regeneration for scleroderma patients

    Get PDF
    Background: The use of stem cells, including mesenchymal stem cells (MSCs), for regenerative medicine is gaining interest for the clinical benefits so far obtained in patients. This study investigates the use of adipose autologous tissue in combination with platelet-rich plasma (PRP) to improve the clinical outcome of patients affected by systemic sclerosis (SSc). Methods: Adipose-derived mesenchymal stem cells (AD-MSCs) and PRPs were purified from healthy donors and SSc patients. The multilineage differentiation potential of AD-MSCs and their genotypic-phenotypic features were investigated. A cytokine production profile was evaluated on AD-MSCs and PRPs from both healthy subjects and SSc patients. The adipose tissue-derived cell fraction, the so-called stromal vascular fraction (SVF), was coinjected with PRP in the perioral area of SSc patients. Results: Histopathological and phenotypical analysis of adipose tissue from SSc patients revealed a disorganization of its distinct architecture coupled with an altered cell composition. Although AD-MSCs derived from SSc patients showed high multipotency, they failed to sustain a terminally differentiated progeny. Furthermore, SVFs derived from SSc patients differed from healthy donors in their MSC-like traits coupled with an aberrant cytokine production profile. Finally, the administration of PRP in combination with autologous SVF improved buccal's rhyme, skin elasticity and vascularization for all of the SSc patients enrolled in this study. Conclusions: This innovative regenerative therapy could be exploited for the treatment of chronic connective tissue diseases, including SSc

    Distinct phenotypes associated with mangrove and lagoon habitats in two widespread caribbean corals, porites astreoides and porites divaricata.

    Get PDF
    AbstractAs coral reefs experience dramatic declines in coral cover throughout the tropics, there is an urgent need to understand the role that non-reef habitats, such as mangroves, play in the ecological niche of corals. Mangrove habitats present a challenge to reef-dwelling corals because they can differ dramatically from adjacent reef habitats with respect to key environmental parameters, such as light. Because variation in light within reef habitats is known to drive intraspecific differences in coral phenotype, we hypothesized that coral species that can exploit both reef and mangrove habitats will exhibit predictable differences in phenotypes between habitats. To investigate how intraspecific variation, driven by either local adaptation or phenotypic plasticity, might enable particular coral species to exploit these two qualitatively different habitat types, we compared the phenotypes of two widespread Caribbean corals, Porites divaricata and Porites astreoides, in mangrove versus lagoon habitats on Turneffe Atoll, Belize. We document significant differences in colony size, color, structural complexity, and corallite morphology between habitats. In every instance, the phenotypic differences between mangrove prop root and lagoon corals exhibited consistent trends in both P. divaricata and P. astreoides. We believe this study is the first to document intraspecific phenotypic diversity in corals occupying mangrove prop root versus lagoonal patch reef habitats. A difference in the capacity to adopt an alternative phenotype that is well suited to the mangrove habitat may explain why some reef coral species can exploit mangroves, while others cannot.Published versio

    Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant

    Get PDF
    Despite intense research and clinical efforts, patients affected by advanced colorectal cancer (CRC) have still a poor prognosis. The discovery of colorectal (CR) cancer stem cell (CSC) as the cell compartment responsible for tumor initiation and propagation may provide new opportunities for the development of new therapeutic strategies. Given the reduced sensitivity of CR-CSCs to chemotherapy and the ability of bone morphogenetic proteins (BMP) to promote colonic stem cell differentiation, we aimed to investigate whether an enhanced variant of BMP7 (BMP7v) could sensitize to chemotherapy-resistant CRC cells and tumors. Thirty-five primary human cultures enriched in CR-CSCs, including four from chemoresistant metastatic lesions, were used for in vitro studies and to generate CR-CSC-based mouse avatars to evaluate tumor growth and progression upon treatment with BMP7v alone or in combination with standard therapy or PI3K inhibitors. BMP7v treatment promotes CR-CSC differentiation and recapitulates the cell differentiation-related gene expression profile by suppressing Wnt pathway activity and reducing mesenchymal traits and survival of CR-CSCs. Moreover, in CR-CSC-based mouse avatars, BMP7v exerts an antiangiogenic effect and sensitizes tumor cells to standard chemotherapy regardless of the mutational, MSI, and CMS profiles. Of note, tumor harboring PIK3CA mutations were affected to a lower extent by the combination of BMP7v and chemotherapy. However, the addition of a PI3K inhibitor to the BMP7v-based combination potentiates PIK3CA-mutant tumor drug response and reduces the metastatic lesion size. These data suggest that BMP7v treatment may represent a useful antiangiogenic and prodifferentiation agent, which renders CSCs sensitive to both standard and targeted therapies

    The projected degradation of subtropical coral assemblages by recurrent thermal stress

    Get PDF
    1. Subtropical coral assemblages are threatened by similar extreme thermal stress events to their tropical counterparts. Yet, the mid‐ and long‐term thermal stress responses of corals in subtropical environments remain largely unquantified, limiting our capacity to predict their future viability. 2. The annual survival, growth and recruitment of 311 individual corals within the Solitary Islands Marine Park (Australia) was recorded over a 3‐year period (2016–2018), including the 2015/2016 thermal stress event. These data were used to parameterise integral projection models quantifying the effect of thermal stress within a subtropical coral assemblage. Stochastic simulations were also applied to evaluate the implications of recurrent thermal stress scenarios predicted by four different Representative Concentration Pathways. 3. We report differential shifts in population growth rates (λ) among coral populations during both stress and non‐stress periods, confirming contrasting bleaching responses among taxa. However, even during non‐stress periods, the observed dynamics for all taxa were unable to maintain current community composition, highlighting the need for external recruitment sources to support the community structure. 4. Across all coral taxa, projected stochastic growth rates (λs) were found to be lowest under higher emissions scenarios. Correspondingly, predicted increases in recurrent thermal stress regimes may accelerate the loss of coral coverage, species diversity and structural complexity within subtropical regions. 5. We suggest that these trends are primarily due to the susceptibility of subtropical specialists and endemic species, such as Pocillopora aliciae, to thermal stress. Similarly, the viability of many tropical coral populations at higher latitudes is highly dependent on the persistence of up‐current tropical systems. As such, the inherent dynamics of subtropical coral populations appear unable to support their future persistence under unprecedented thermal disturbance scenarios
    • 

    corecore