882 research outputs found
Effective action for a quantum scalar field in warped spaces
We investigate the one-loop corrections at zero, as well as finite
temperature, of a scalar field taking place in a braneworld motived warped
background. After to reach a well defined problem, we calculate the effective
action with the corresponding quantum corrections to each case.Comment: 10 pages, to appear in The European Physical Journal
On the bilinear covariants associated to mass dimension one spinors
In this paper we approach the issue of Clifford algebra basis deformation,
allowing for bilinear covariants associated to Elko spinors which satisfy the
Fierz-Pauli-Kofink identities. We present a complete analysis of covariance,
taking into account the involved dual structure associated to Elko. Moreover,
the possible generalizations to the recently presented new dual structure are
performed.Comment: 9 pages, 0 figure
Pressure-induced Jahn-Teller switch in the homoleptic hybrid perovskite [(CH3)(2)NH2]Cu(HCOO)(3): orbital reordering by unconventional degrees of freedom
Through in situ, high-pressure X-ray diffraction experiments we have shown that the homoleptic perovskite-like coordination polymer [(CH3)2NH2]Cu(HCOO)3 undergoes a pressure-induced orbital reordering phase transition above 5.20 GPa. This transition is distinct from previously reported Jahn–Teller switching in coordination polymers, which required at least two different ligands that crystallize in a reverse spectrochemical series. We show that the orbital reordering phase transition in [(CH3)2NH2]Cu(HCOO)3 is instead primarily driven by unconventional octahedral tilts and shifts in the framework, and/or a reconfiguration of A-site cation ordering. These structural instabilities are unique to the coordination polymer perovskites, and may form the basis for undiscovered orbital reorientation phenomena in this broad family of materials
Sudden cardiac death during scuba diving: a case report of a patient with unknown hypertrophic cardiomyopathy
Background Scuba diving is a recreational activity usually considered at low impact on cardiovascular system. However, when diving, increased ambient pressure exerts several effects on the cardiovascular and pulmonary systems, mainly due to redistribution of peripheral blood into the central circulation. This phenomenon, also known as blood shift, may produce a significant overload on a non-healthy heart. Case summary We present the case of a female patient who experienced sudden cardiac death during scuba diving: post-mortem cardiac magnetic resonance and autopsy revealed that the patient was affected by previously unknown hypertrophic cardiomyopathy. Discussion Diving exposes the body to significant physiological changes that may overstress a diseased heart. This case suggests the need for some cardiovascular exams, such as an echocardiogram or, at least, an electrocardiogram, for screening cardiovascular abnormalities in subjects who wish to practice scuba diving
Effects of Nutrient Availability and Other Elevational Changes on Bromeliad Populations and Their Invertebrate Communities in a Humid Tropical Forest in Puerto Rico
Nutrient inputs into tank bromeliads were studied in relation to growth and productivity, and the abundance, diversity and biomass of their animal inhabitants, in three forest types along an elevational gradient. Concentrations of phosphorus, potassium and calcium in canopy-derived debris, and nitrogen and phosphorus in phytotelm water, declined with increasing elevation. Dwarf forest bromeliads contained the smallest amounts of debris/plant and lowest concentrations of nutrients in plant tissue. Their leaf turnover rate and productivity were highest and, because of high plant density, they comprised 12.8and contained 3.3 t ha -1 of water. Annual nutrient budgets indicated that these microcosms were nutrient-abundant and accumulated \u3c 5dwarf forest, where accumulation was c. 25biomass/plant peaked in the intermediate elevation forest, and were positively correlated with the debris content/bromeliad across all forest types. Animal species richness showed a significant mid-elevational peak, whereas abundance was independent of species richness and debris quantities, and declined with elevation as forest net primary productivity declined. The unimodal pattern of species richness was not correlated with nutrient concentrations, and relationships among faunal abundance, species richness, nutrient inputs and environment are too complex to warrant simple generalizations about nutrient resources and diversity, even in apparently simple microhabitats
High-Pressure Synthesis, Crystal Structures, and Properties of A-Site Columnar-Ordered Quadruple Perovskites NaRMn2Ti4O12 with R = Sm, Eu, Gd, Dy, Ho, Y
The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A′A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A′[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A′ site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A′ and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8–13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er–Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA′3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase
- …