368 research outputs found
Exciton energy transfer in nanotube bundles
Photoluminescence is commonly used to identify the electronic structure of
individual nanotubes. But, nanotubes naturally occur in bundles. Thus, we
investigate photoluminescence of nanotube bundles. We show that their complex
spectra are simply explained by exciton energy transfer between adjacent tubes,
whereby excitation of large gap tubes induces emission from smaller gap ones
via Forster interaction between excitons. The consequent relaxation rate is
faster than non-radiative recombination, leading to enhanced photoluminescence
of acceptor tubes. This fingerprints bundles with different compositions and
opens opportunities to optimize them for opto-electronics.Comment: 5 pages, 5 figure
Edge-functionalized and substitutional doped graphene nanoribbons: electronic and spin properties
Graphene nanoribbons are the counterpart of carbon nanotubes in
graphene-based nanoelectronics. We investigate the electronic properties of
chemically modified ribbons by means of density functional theory. We observe
that chemical modifications of zigzag ribbons can break the spin degeneracy.
This promotes the onset of a semiconducting-metal transition, or of an
half-semiconducting state, with the two spin channels having a different
bandgap, or of a spin-polarized half-semiconducting state -where the spins in
the valence and conduction bands are oppositely polarized. Edge
functionalization of armchair ribbons gives electronic states a few eV away
from the Fermi level, and does not significantly affect their bandgap. N and B
produce different effects, depending on the position of the substitutional
site. In particular, edge substitutions at low density do not significantly
alter the bandgap, while bulk substitution promotes the onset of
semiconducting-metal transitions. Pyridine-like defects induce a
semiconducting-metal transition.Comment: 12 pages, 5 figure
Characterization of carbon nanotube–thermotropic nematic liquid crystal composites
Dispersions of carbon nanotubes (CNTs) in liquid crystals (LCs) have attracted attention due to their unique properties and possible applications in photonics and electronics. However, these are hard to stabilize, and the loading level in the equilibrium state in LC hosts is small. A practical way to monitor the quality and CNT incorporation in such equilibrium dispersions is required. Here, we compare different methods for characterising equilibrium CNT–LC composite materials
Interactions and crosstalk between gut microbiota and humans: study on the molecular responses of Enterococcus faeciumNCIMB 10415 to bioactive compounds and feedback signals
Serotonin Exposure Improves Stress Resistance, Aggregation, and Biofilm Formation in the Probiotic Enterococcus faecium NCIMB10415
Finite-size scaling in silver nanowire films: design considerations for practical devices
We report the first application of finite-size scaling theory to nanostructured percolating networks, using silver nanowire (AgNW) films as a model system for experiment and simulation. AgNWs have been shown to be a prime candidate for replacing Indium Tin Oxide (ITO) in applications such as capacitive touch sensing. While their performance as large area films is well-studied, the production of working devices involves patterning of the films to produce isolated electrode structures, which exhibit finite-size scaling when these features are sufficiently small. We demonstrate a generalised method for understanding this behaviour in practical rod percolation systems, such as AgNW films, and study the effect of systematic variation of the length distribution of the percolating material. We derive a design rule for the minimum viable feature size in a device pattern, relating it to parameters which can be derived from a transmittance-sheet resistance data series for the material in question. This understanding has direct implications for the industrial adoption of silver nanowire electrodes in applications where small features are required including single-layer capacitive touch sensors, LCD and OLED display panels
Performance Analyses of EGEE-like Grids in Asia and Latin America
<p>Evaluate the status of several EGEE-like infrastructures outside of Europe</p>
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Norepinephrine and Serotonin Can Modulate the Behavior of the Probiotic Enterococcus faecium NCIMB10415 towards the Host: Is a Putative Surface Sensor Involved?
- …
