24 research outputs found

    Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale

    Get PDF
    Sorption heat storage has the potential to store large amounts of thermal energy from renewables and other distributed energy sources. This article provides an overview on the recent advancements on long-term sorption heat storage at material- and prototype- scales. The focus is on applications requiring heat within a temperature range of 30–150 °C such as space heating, domestic hot water production, and some industrial processes. At material level, emphasis is put on solid/gas reactions with water as sorbate. In particular, salt hydrates, adsorbents, and recent advancements on composite materials are reviewed. Most of the investigated salt hydrates comply with requirements such as safety and availability at low cost. However, hydrothermal stability issues such as deliquescence and decomposition at certain operating conditions make their utilization in a pure form challenging. Adsorbents are more hydrothermally stable but have lower energy densities and higher prices. Composite materials are investigated to reduce hydrothermal instabilities while achieving acceptable energy densities and material costs. At prototype-scale, the article provides an updated review on system prototypes based on the reviewed materials. Both open and closed system layouts are addressed, together with the main design issues such as heat and mass transfer in the reactors and materials corrosion resistance. Especially for open systems, the focus is on pure adsorbents rather than salt hydrates as active materials due to their better stability. However, high material costs and desorption temperatures, coupled with lower energy densities at typical system operating conditions, decrease their commercial attractiveness. Among the main conclusions, the implementation within the scientific community of common key performance indicators is suggested together with the inclusion of economic aspects already at material-scale investigations.This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg. TU/e has received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement No 657466 (INPATH-TES). The results of this study can contribute to the development of educational material within INPATH-TES

    Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating

    Get PDF
    Sorption heat storage can potentially store thermal energy for long time periods with a higher energy density compared to conventional storage technologies. A performance comparison in terms of energy density and storage capacity costs of different sorption system concepts used for seasonal heat storage is carried out. The reference scenario for the analysis consisted of satisfying the yearly heating demand of a passive house. Three salt hydrates (MgCl2, Na2S, and SrBr2), one adsorbent (zeolite 13X) and one ideal composite based on CaCl2, are used as active materials in solid sorption systems. One liquid sorption system based on NaOH is also considered in this analysis. The focus is on open solid sorption systems, which are compared with closed sorption systems and with the liquid sorption system. The main results show that, for the assumed reactor layouts, the closed solid sorption systems are generally more expensive compared to open systems. The use of the ideal composite represented a good compromise between energy density and storage capacity costs, assuming a sufficient hydrothermal stability. The ideal liquid system resulted more affordable in terms of reactor and active material costs but less compact compared to the systems based on the pure adsorbent and certain salt hydrates. Among the main conclusions, this analysis shows that the costs for the investigated ideal systems based on sorption reactions, even considering only the active material and the reactor material costs, are relatively high compared to the acceptable storage capacity costs defined for different users. However, acceptable storage capacity costs reflect the present market condition, and they can sensibly increase or decrease in a relatively short period due to for e.g. the variation of fossil fuels prices. Therefore, in the upcoming future, systems like the ones investigated in this work can become more competitive in the energy sector.This project receives the support of the European Union, the European Regional Development Fund ERDF, Flanders Innovation & Entrepreneurship and the Province of Limburg. TU/e has received funding from European Union’s Horizon 2020 research and innovation programme under grant agreement NÂș 657466 (INPATH-TES). The results of this study can contribute to the development of educational material within INPATH-TES

    Sorption thermal energy storage for smart grids:a system-scale analysis

    Get PDF

    Modeling of a sorption heat storage reactor using nonlinear autoregressive neural networks

    No full text
    Sorption thermal energy storage has the potential to store thermal energy over a long time with a higher energy density and less thermal losses compared to other technologies. In terms of modeling, sorption reactors are commonly described by physics-based models encompassing complex nonlinear phenomena occurring in the reactor. From a system modeling perspective, the use of data-driven models can be beneficial in cases where experimental data or high-fidelity data from more complex models are available, and a low computational cost with an acceptable accuracy is desired. The aim of this work is to investigate the capabilities of data-driven models based on two neural networks for modeling an open sorption reactor. The model takes as inputs the inlet temperature and sorbate concentration, and gives as outputs the reactor state of charge (SOC) and outlet temperature (TOUT). To account also for the thermal inertia of heat taking place in the reactor, both outputs are estimated with nonlinear autoregressive neural networks with exogenous inputs (NARXn), which account for the past n model outputs to determine the next output. Three neural network models are analyzed and several test cases are investigated to compare the performance of these neural network models with a high-fidelity CFD model. The results show that, for the SOC estimation, the NARX10 mean squared error (MSE) with respect to the high-fidelity CFD model was approximately two orders of magnitude smaller compared to the NARX1 MSE, resulting in a higher prediction accuracy. On the other hand, using the NARX10 architecture also for the TOUT estimation decreased the accuracy of TOUT estimations compared to a simpler FFNN neural network architecture considered in this work

    Biomass and Methane Production in Double Cereal Cropping Systems with Different Winter Cereal and Maize Plant Densities

    No full text
    The biogas supply chain requires a correct combination of crops to maximize the methane yield per hectare. Field trials were carried out in North Italy over three growing seasons, according to a factorial combination of four cropping systems (maize as a sole-crop or after hybrid barley, triticale and wheat) and two maize plant densities (standard, 7.5 plants m−2 and high, 10 plants m−2) with the plants harvested as whole-crop silage. The specific methane production per ton was measured through the biochemical methane potential (BMP) method, while the methane yield per hectare was calculated on the basis of the BMP results and considering the biomass yield. The average methane yield of wheat resulted to be equal to 4550 Nm3 ha−1, and +17% and +28% higher than triticale and barley, respectively, according to the biomass yield. A delay in maize sowing reduced the yield potential of this crop; the biomass of maize grown after barley, triticale and wheat was 20%, 33% and 47% lower, respectively, than maize cultivated as a single crop. The high plant population increased the biomass yield in the sole-crop maize (+23%) and in the maize grown after barley (+20%), compared to the standard density. The highest biomass (32 t ha−1 DM) and methane yield (9971 Nm3 ha−1) within the cropping systems were obtained for barley followed by maize at a high plant density. This cropping system increased the methane yield by 46% and 18%, respectively, compared to the sole-crop maize or maize after triticale at a standard density. The smaller amount of available solar radiation, resulting from the later sowing of maize, reduced the advantage related to the application of a high plant density

    Thermochemical storage for long‐term low‐temperature applications: Performance estimation of ideal systems

    No full text
    Thermochemical heat storage has the potential to store a large amount of thermal energy from renewables and to cope with the seasonal mismatch of energy demand and supply, ideally without energy losses typical of sensible heat storage. However, in order to have a commercially attractive system, research at material, reactor, and ultimately at system level is still required. The aim of this work is to investigate the current state-of-the-art research at prototype- and system-scale, and to estimate the performance of ideal long-term low-temperature thermochemical storage systems in terms of energy densities and storage capacity costs. First, a review on existing systems based on solid/gas reactions is carried out. Especially for open systems, the choice of adsorbents rather than salt hydrates as active materials is prominent due to their enhanced stability. However, high material costs and desorption temperatures, coupled with lower energy densities, decrease their commercial attractiveness. Then, the performance of ideal open thermochemical heat storage systems based on solid/gas reactions are estimated for different active materials among which salt hydrates, an adsorbent, and an ideal composite. The common reference scenario assumes that the seasonal space heating energy of a passive house has to be stored. The results show that the open system based on a composite material, can represent a valid compromise between hydrothermal stability and storage capacity costs. However, it results in a very large system for the assumed reference scenario conditions. The performances of open systems are then compared with the ideal performance of closed solid sorption systems. The results show that closed systems are in general more expensive and less compact for the assumed reactor layouts. Finally, liquid sorption systems from the literature are compared with the open and closed solid sorption systems. The results show that most of the liquid systems are not able to achieve the minimum temperature required by the consumer in the reference scenario. However, a liquid sorption system based on NaOH-H2O can in principle satisfy the consumer needs and result more compact and less expensive than solid sorption systems based on pure adsorbents and certain salt hydrates. Beside research at material- and reactor-scale, integration of thermochemical storage at grid level has to be investigated to assess its techno-economic feasibility based on their performance and interactions with production and consumption technologies

    Using representative time slices for optimization of thermal energy storage systems in low temperature district heating systems

    No full text
    4th generation district heating and cooling networks (shortly THERNETs) are often coined as a crucial technology to enable the transition towards low-carbon smart energy systems. Most importantly, they open perspectives for integration of low-grade residual heat from industry, renewable energy sources (such as geothermal heat and cold and solar thermal collectors), more efficient energy conversion units (such as collective heat pumps), while thermal energy storage (TES) systems increase system flexibility. In order to optimize design and control of such complex systems, a toolbox modesto (Multi-objective district energy systems toolbox for optimization) is under development. However, the representation of seasonal heat and cold storage systems on an annual basis requires large computational power. In an attempt to decrease computational cost, a technique with representative time slices (inspired by and combining aspects from optimization studies of electrical energy systems, unit commitment problems, thermal systems with short term energy storage and smaller scale industrial thermal systems with longer term energy storage) is developed and tested. The aim of this study is to investigate the applicability of such representative time periods to optimize seasonal TES systems in THERNETs. To this end a full year optimization is compared to one with representative time periods for a realistic case study that uses demand profiles from the city of Genk (Belgium) and energy system parameters from Marstal (Denmark). This comparative study shows that modelling with representative periods is sufficient to mimic the behaviour of a full year optimization. However, when curtailment of solar heat injection occurs, not all representations yield the same results. It was found that for the studied case, a selection of 12 representative weeks performs best, while all reduced optimizations result in a substantial reduction (speed-up of on average x4.8 to x7.7) of the calculation time.status: publishe

    Hot tap water production by a 4 kW sorption segmented reactor in household scale for seasonal heat storage

    No full text
    \u3cp\u3eReplacing fossil fuel by solar energy as a promising sustainable energy source, is of high interest, for both electricity and heat generation. However, to reach high solar thermal fractions and to overcome the mismatch between supply and demand of solar heat, long term heat storage is necessary. A promising method for long term heat storage is to use thermochemical materials, TCMs. The reversible adsorption–desorption reactions, which are exothermic in the hydration direction and endothermic in the reverse dehydration direction, can be used to store heat. A 250 L setup based on a gas–solid reaction between water–zeolite 13X is designed and tested. Humid air is introduced into a packed bed reactor filled with dehydrated material, and due to the adsorption of water vapour on TCM, heat is released. The reactor consists of four segments of 62.5 L each, which can be operated in different modes. The temperature is measured at several locations to gain insight into the effect of segmentation. Experiments are performeignore.txtd for hydration–dehydration cycles in different modes. Using the temperatures measured at different locations in the system, a complete thermal picture of the system is calculated, including thermal powers of the segments. A maximum power of around 4 kW is obtained by running the segments in parallel mode. Compactness and robustness are two important factors for the successful introduction of heat storage systems in the built environment, and both can be met by reactor segmentation. With the segmented reactor concept, a high flexibility can be achieved in the performance of a heat storage system, while still being compact. The system is also able to produce domestic hot tap water with the required temperature of 60 °C. This can be done by implementing a recuperating unit to preheat the inflow by recovering the residual heat in the outflow. In this work, the recuperator is simulated by a heater, and applicability of the system for domestic purposes is assessed. An energy density of 198 kWh/m\u3csup\u3e3\u3c/sup\u3e is calculated on material level, and the energy density calculated on reactor level is around 108 kWh/m\u3csup\u3e3\u3c/sup\u3e and 61 kWh/m\u3csup\u3e3\u3c/sup\u3e for experiment without and with preheating, respectively.\u3c/p\u3

    Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans.

    Get PDF
    The small leucine-rich proteoglycans (SLRPs) are involved in many aspects of mammalian biology, both in health and disease. They are now being recognized as key signaling molecules with an expanding repertoire of molecular interactions affecting not only growth factors, but also various receptors involved in controlling cell growth, morphogenesis and immunity. The complexity of SLRP signaling and the multitude of affected signaling pathways can be reconciled with a hierarchical affinity-based interaction of various SLRPs in a cell- and tissue-specific context. Here, we review this interacting network, describe new relationships of the SLRPs with tyrosine kinase and Toll-like receptors and critically assess their roles in cancer and innate immunity
    corecore