10 research outputs found

    Geographic Variation in Agonistic Responses of Territorial Male Brook Sticklebacks, Culae Inconstans

    Get PDF
    Author Institution: Department of Biology, Wilmington College ; Department of Biology, Earlham CollegeTerritorial aggressive behavior was studied in male brook sticklebacks collected in Saskatoon, Saskatchewan; Oshkosh, Wisconsin; Ft. Atkinson, Wisconsin, and Urbana, Ohio. In the 20 h of observation 1,167 individual encounters with 3,305 separate aggressive displays were observed. Aggressive behavior was observed to be complex with at least 12 distinct aggressive display postures observed

    Testing for Evidence of Maternal Effects among Individuals and Populations of White Crappie

    Get PDF
    For an increasing number of species, maternal characteristics have been correlated with the characteristics of their eggs or larvae at the individual level. Documenting these maternal effects at the population level, however, is uncommon. For white crappies Pomoxis annularis, we evaluated whether individual maternal effects on eggs existed and then explored whether incorporating maternal effects explained additional variation in recruitment, a population-level response. Individual egg quality (measured as ovary energy density) increased with maternal length among individuals from seven Ohio reservoirs in 1999 and three in 2000. Among these same individuals, egg quality increased with maternal condition factor (measured as residual wet mass for a given length) in 1999 but not in 2000. In 2000 we estimated somatic energy density, an improved measure of condition; egg quality increased with somatic energy density, but somatic energy density was also strongly correlated with maternal length. Hence, we could not determine whether maternal length or condition was the primary factor influencing white crappie egg quality. Across seven populations, the relative population fecundity (i.e., stock size) of the 1999 year-class was unable to explain the variation in recruitment to age 2 (Ricker model r^2 = 0.04 and Beverton and Holt model r^2 = 0.02). Mean ovary energy density (i.e., egg quality), however, was unable to explain additional recruitment variability in either model. Hence, we documented evidence of maternal effects on individual ovaries but not on population-level recruitment. Nonetheless, we recommend that future studies seeking to understand white crappie recruitment continue to consider maternal effects as a potential factor, especially those studies that may have greater sample sizes at the population level and, in turn, a greater probability of documenting a population-level effect.This research was funded by Federal Aid in Sport Fish Restoration Project F-69-P, administered jointly by U.S. Fish and Wildlife Service and Ohio Department of Natural Resources, Division of Wildlife and the Department of Evolution, Ecology, and Organismal Biology at Ohio State University

    Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation

    No full text
    So far, the characteristics of a good quality egg have been elusive, similar to the nature of the physiological, cellular, and molecular cues leading to its production both in vivo and in vitro. Current understanding highlights a strong and complex interdependence between the follicular cells and the gamete. Secreted factors induce cellular responses in the follicular cells, and direct exchange of small molecules from the cumulus cells to the oocyte through gap junctions controls meiotic arrest. Studying the interconnection between the cumulus cells and the oocyte, we previously demonstrated that the somatic cells also contribute transcripts to the gamete. Here, we show that these transcripts can be visualized moving down the transzonal projections (TZPs) to the oocyte, and that a time course analysis revealed progressive RNA accumulation in the TZPs, indicating that RNA transfer occurs before the initiation of meiosis resumption under a timetable fitting with the acquisition of developmental competence. A comparison of the identity of the nascent transcripts trafficking in the TZPs, with those in the oocyte increasing in abundance during maturation, and that are present on the oocyte's polyribosomes, revealed transcripts common to all three fractions, suggesting the use of transferred transcripts for translation. Furthermore, the removal of potential RNA trafficking by stripping the cumulus cells caused a significant reduction in maturation rates, indicating the need for the cumulus cell RNA transfer to the oocyte. These results offer a new perspective to the determinants of oocyte quality and female fertility, as well as provide insight that may eventually be used to improve in vitro maturation conditions

    Accumulation of Chromatin Remodelling Enzyme and Histone Transcripts in Bovine Oocytes

    No full text
    During growth, the oocyte accumulates mRNAs that will be required in the later stages of oogenesis and early embryogenesis until the activation of the embryonic genome. Each of these developmental stages is controlled by multiple regulatory mechanisms that ensure proper protein production. Thus mRNAs are stabilized, stored, recruited, polyadenylated, translated and/or degraded over a period of several days. As a consequence, understanding the biological significance of changes in the abundance of transcripts during oocyte growth and differentiation is rather complex. Nevertheless the availability of transcriptomic platforms applicable to scarce samples such as oocytes has generated large amounts of data that depict the transcriptome of oocytes under different conditions. Despite several technical constrains related to protein determination in oocytes that still limit the possibility to verify certain hypothesis, it is now possible to use mRNA levels to start building plausible scenarios. To start deciphering the changes in the level of specific mRNAs involved in chromatin remodelling, we have performed a meta-analysis of existing microarray datasets from germinal vesicle (GV) stage bovine oocytes during the final stages of oocyte differentiation. We then analysed the expression profiles of histone and histone-remodelling enzyme mRNAs and correlated these with the major histone modifications known to occur at the same period, based on data available in the literature. We believe that this approach could reveal the function of specific enzymes in the oocyte. In turn, this information will be useful in future studies, which final ambitious goal is to decipher the 'oocyte-specific histone code'
    corecore