83 research outputs found

    Low-metallicity stellar halo populations as tracers of dark matter haloes

    Get PDF
    We analyse the density profiles of the stellar halo populations in eight Milky-Way mass galaxies, simulated within the Λ\Lambda-Cold Dark Matter scenario. We find that accreted stars can be well-fitted by an Einasto profile, as well as any subsample defined according to metallicity. We detect a clear correlation between the Einasto fitting parameters of the low-metallicity stellar populations and those of the dark matter haloes. The correlations for stars with [Fe/H]<−3<-3 allow us to predict the shape of the dark matter profiles within residuals of ∼10\sim 10 per cent, in case the contribution from in situ stars remains small. Using Einasto parameters estimated for the stellar halo of the Milky Way and assuming the later formed with significant contributions from accreted low-mass satellite, our simulations predict α∼0.15\alpha \sim 0.15 and r2∼15r_2 \sim 15 kpc for its dark matter profile. These values, combined with observed estimations of the local dark matter density, yield an enclosed dark matter mass at ∼8\sim 8 kpc in the range 3.9−6.7×10103.9 - 6.7 \times 10^{10} M⊙_{\odot}, in agreement with recent observational results. These findings suggest that low-metallicity stellar haloes could store relevant information on the DM haloes. Forthcoming observations would help us to further constrain our models and predictions.Comment: 5 pages,3 figures, MNRAS Letters accepte

    Towards a more realistic population of bright spiral galaxies in cosmological simulations

    Full text link
    We present an update to the multiphase SPH galaxy formation code by Scannapieco et al. We include a more elaborate treatment of the production of metals, cooling rates based on individual element abundances, and a scheme for the turbulent diffusion of metals. Our SN feedback model now transfers energy to the ISM in kinetic and thermal form, and we include a prescription for the effects of radiation pressure from massive young stars on the ISM. We calibrate our new code on the well studied Aquarius haloes and then use it to simulate a sample of 16 galaxies with halo masses between 1x10^11 and 3x10^12 M_sun. In general, the stellar masses of the sample agree well with the stellar mass to halo mass relation inferred from abundance matching techniques for redshifts z=0-4. There is however a tendency to overproduce stars at z>4 and to underproduce them at z<0.5 in the least massive haloes. Overly high SFRs at z<1 for the most massive haloes are likely connected to the lack of AGN feedback in our model. The simulated sample also shows reasonable agreement with observed star formation rates, sizes, gas fractions and gas-phase metallicities at z=0-3. Remaining discrepancies can be connected to deviations from predictions for star formation histories from abundance matching. At z=0, the model galaxies show realistic morphologies, stellar surface density profiles, circular velocity curves and stellar metallicities, but overly flat metallicity gradients. 15 out of 16 of our galaxies contain disk components with kinematic disk fraction ranging between 15 and 65 %. The disk fraction depends on the time of the last destructive merger or misaligned infall event. Considering the remaining shortcomings of our simulations we conclude that even higher kinematic disk fractions may be possible for LambdaCDM haloes with quiet merger histories, such as the Aquarius haloes.Comment: 26 pages, 20 figures, accepted for publication in MNRA

    Clues for the origin of the fundamental metallicity relations. I: The hierarchical building up of the structure

    Get PDF
    We analyse the evolutionary history of galaxies formed in a hierarchical scenario consistent with the concordance Λ\Lambda-CDM model focusing on the study of the relation between their chemical and dynamical properties. Our simulations consistently describe the formation of the structure and its chemical enrichment within a cosmological context. Our results indicate that the luminosity-metallicity (LZR) and the stellar mass-metallicity (MZR) relations are naturally generated in a hierarchical scenario. Both relations are found to evolve with redshift. In the case of the MZR, the estimated evolution is weaker than that deduced from observational works by approximately 0.10 dex. We also determine a characteristic stellar mass, Mc≈3×1010M⊙M_c \approx 3 \times 10^{10} M_{\odot}, which segregates the simulated galaxy population into two distinctive groups and which remains unchanged since z∼3z\sim 3, with a very weak evolution of its metallicity content. The value and role played by McM_c is consistent with the characteristic mass estimated from the SDSS galaxy survey by Kauffmann et al. (2004). Our findings suggest that systems with stellar masses smaller than McM_c are responsible for the evolution of this relation at least from z≈3 z\approx 3. Larger systems are stellar dominated and have formed more than 50 per cent of their stars at z≥2z \ge 2, showing very weak evolution since this epoch. We also found bimodal metallicity and age distributions from z∼3z\sim3, which reflects the existence of two different galaxy populations. Although SN feedback may affect the properties of galaxies and help to shape the MZR, it is unlikely that it will significantly modify McM_c since, from z=3z=3 this stellar mass is found in systems with circular velocities larger than 100 \kms.Comment: 17 pages, 13 figures. Minor changes to match accepted version. Accepted October 3 MNRA
    • …
    corecore