105 research outputs found

    Cloning and characterization of a novel alternatively spliced transcript of the human CHD7 putative helicase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>CHD7 </it>(Chromodomain Helicase DNA binding protein 7) gene encodes a member of the chromodomain family of ATP-dependent chromatin remodeling enzymes. Mutations in the <it>CHD7 </it>gene are found in individuals with CHARGE, a syndrome characterized by multiple birth malformations in several tissues. CHD7 was identified as a binding partner of PBAF complex (Polybromo and BRG Associated Factor containing complex) playing a central role in the transcriptional reprogramming process associated to the formation of multipotent migratory neural crest, a transient cell population associated with the genesis of various tissues. <it>CHD7 </it>is a large gene containing 38 annotated exons and spanning 200 kb of genomic sequence. Although genes containing such number of exons are expected to have several alternative transcripts, there are very few evidences of alternative transcripts associated to <it>CHD7 </it>to date indicating that alternative splicing associated to this gene is poorly characterized.</p> <p>Findings</p> <p>Here, we report the cloning and characterization by experimental and computational studies of a novel alternative transcript of the human <it>CHD7 </it>(named CHD7 CRA_e), which lacks most of its coding exons. We confirmed by overexpression of CHD7 CRA_e alternative transcript that it is translated into a protein isoform lacking most of the domains displayed by the canonical isoform. Expression of the CHD7 CRA_e transcript was detected in normal liver, in addition to the DU145 human prostate carcinoma cell line from which it was originally isolated.</p> <p>Conclusions</p> <p>Our findings indicate that the splicing event associated to the CHD7 CRA_e alternative transcript is functional. The characterization of the CHD7 CRA_e novel isoform presented here not only sets the basis for more detailed functional studies of this isoform, but, also, contributes to the alternative splicing annotation of the <it>CHD7 </it>gene and the design of future functional studies aimed at the elucidation of the molecular functions of its gene products.</p

    Convergent evolution of chicken Z and human X chromosomes by expansion and gene acquisition

    Get PDF
    In birds, as in mammals, one pair of chromosomes differs between the sexes. In birds, males are ZZ and females ZW. In mammals, males are XY and females XX. Like the mammalian XY pair, the avian ZW pair is believed to have evolved from autosomes, with most change occurring in the chromosomes found in only one sex—the W and Y chromosomes1, 2, 3, 4, 5. By contrast, the sex chromosomes found in both sexes—the Z and X chromosomes—are assumed to have diverged little from their autosomal progenitors2. Here we report findings that challenge this assumption for both the chicken Z chromosome and the human X chromosome. The chicken Z chromosome, which we sequenced essentially to completion, is less gene-dense than chicken autosomes but contains a massive tandem array containing hundreds of duplicated genes expressed in testes. A comprehensive comparison of the chicken Z chromosome with the finished sequence of the human X chromosome demonstrates that each evolved independently from different portions of the ancestral genome. Despite this independence, the chicken Z and human X chromosomes share features that distinguish them from autosomes: the acquisition and amplification of testis-expressed genes, and a low gene density resulting from an expansion of intergenic regions. These features were not present on the autosomes from which the Z and X chromosomes originated but were instead acquired during the evolution of Z and X as sex chromosomes. We conclude that the avian Z and mammalian X chromosomes followed convergent evolutionary trajectories, despite their evolving with opposite (female versus male) systems of heterogamety. More broadly, in birds and mammals, sex chromosome evolution involved not only gene loss in sex-specific chromosomes, but also marked expansion and gene acquisition in sex chromosomes common to males and females.National Science Foundation (U.S.)Howard Hughes Medical Institut

    Transcriptome dynamics of a broad host-range cyanophage and its hosts

    Get PDF
    Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage

    Systematic review of interventions to promote the performance of physical distancing behaviours during pandemics/epidemics of infectious diseases spread via aerosols or droplets

    Get PDF
    Objectives Physical-distancing (i.e., keeping 1-2m apart when co-located) can prevent cases of infectious-diseases spread by droplets/aerosols (i.e. SARS-COV2). Distancing is a recommendation/requirement in many countries. This systematic-review aimed to determine which interventions and behaviour change techniques (BCTs) are effective in promoting adherence to physical-distancing and through which potential mechanisms of action (MOAs). Methods Six databases were searched for studies of physical-distancing interventions. A narrative synthesis included any design that included a comparator (e.g., pre-intervention versus post-intervention; randomised controlled trial), for any population and year. Risk-of-bias was assessed using the Mixed Methods Appraisal Tool. BCTs and potential MoAs were identified in each intervention.. Results Six papers of moderate/high quality indicated that distancing interventions could successfully change MoAs/behaviour. Successful BCTs (MoAs) included feedback on behaviour (e.g., motivation); information about/ salience of health consequences (e.g., beliefs about consequences) and demonstration (e.g., beliefs about capabilities) and restructuring the physical environment (e.g., environmental context and resources). The most promising interventions were proximity buzzers, directional systems and posters with loss-framed messages that demonstrated the behaviours. Conclusions High quality RCTs that measure behaviour, have representative samples and specify/test a larger range of BCTs /MoAs are needed

    The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population

    Get PDF
    Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate

    Breast cancer stem cells: implications for therapy of breast cancer

    Get PDF
    The concept of cancer stem cells responsible for tumour origin, maintenance, and resistance to treatment has gained prominence in the field of breast cancer research. The therapeutic targeting of these cells has the potential to eliminate residual disease and may become an important component of a multimodality treatment. Recent improvements in immunotherapy targeting of tumour-associated antigens have advanced the prospect of targeting breast cancer stem cells, an approach that might lead to more meaningful clinical remissions. Here, we review the role of stem cells in the healthy breast, the role of breast cancer stem cells in disease, and the potential to target these cells

    Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage

    Get PDF
    Bacteria in the 16S rRNA clade SAR86 are among the most abundant uncultivated constituents of microbial assemblages in the surface ocean for which little genomic information is currently available. Bioinformatic techniques were used to assemble two nearly complete genomes from marine metagenomes and single-cell sequencing provided two more partial genomes. Recruitment of metagenomic data shows that these SAR86 genomes substantially increase our knowledge of non-photosynthetic bacteria in the surface ocean. Phylogenomic analyses establish SAR86 as a basal and divergent lineage of γ-proteobacteria, and the individual genomes display a temperature-dependent distribution. Modestly sized at 1.25–1.7 Mbp, the SAR86 genomes lack several pathways for amino-acid and vitamin synthesis as well as sulfate reduction, trends commonly observed in other abundant marine microbes. SAR86 appears to be an aerobic chemoheterotroph with the potential for proteorhodopsin-based ATP generation, though the apparent lack of a retinal biosynthesis pathway may require it to scavenge exogenously-derived pigments to utilize proteorhodopsin. The genomes contain an expanded capacity for the degradation of lipids and carbohydrates acquired using a wealth of tonB-dependent outer membrane receptors. Like the abundant planktonic marine bacterial clade SAR11, SAR86 exhibits metabolic streamlining, but also a distinct carbon compound specialization, possibly avoiding competition
    • …
    corecore