6 research outputs found

    Gepotidacin for the Treatment of Uncomplicated Urogenital Gonorrhea: A Phase 2, Randomized, Dose-Ranging, Single-Oral Dose Evaluation

    Get PDF
    Background: In this phase 2 study, we evaluated the efficacy and safety of oral gepotidacin, a novel triazaacenaphthylene bacterial type II topoisomerase inhibitor, for the treatment of uncomplicated urogenital gonorrhea. Methods: Adult participants with suspected urogenital gonorrhea were enrolled and completed baseline (day 1) and test-of-cure (days 4-8) visits. Pretreatment and posttreatment urogenital swabs were collected for Neisseria gonorrhoeae (NG) culture and susceptibility testing. Pharyngeal and rectal swab specimens were collected if there were known exposures. Participants were stratified by gender and randomized 1:1 to receive a 1500-mg or 3000-mg single oral dose of gepotidacin. Results: The microbiologically evaluable population consisted of 69 participants, with NG isolated from 69 (100%) urogenital, 2 (3%) pharyngeal, and 3 (4%) rectal specimens. Microbiological eradication of NG was achieved by 97%, 95%, and 96% of participants (lower 1-sided exact 95% confidence interval bound, 85.1%, 84.7%, and 89.1%, respectively) for the 1500-mg, 3000-mg, and combined dose groups, respectively. Microbiological cure was achieved in 66/69 (96%) urogenital infections. All 3 failures were NG isolates that demonstrated the highest observed gepotidacin minimum inhibitory concentration of 1 µg/mL and a common gene mutation. At the pharyngeal and rectal sites, 1/2 and 3/3 NG isolates, respectively, demonstrated microbiological cure. There were no treatment-limiting adverse events for either dose. Conclusions: This study demonstrated that single, oral doses of gepotidacin were ≥95% effective for bacterial eradication of NG in adult participants with uncomplicated urogenital gonorrhea

    Using rapid point-of-care tests to inform antibiotic choice to mitigate drug resistance in gonorrhoea

    Get PDF
    Background: The first cases of extensively drug resistant gonorrhoea were recorded in the United Kingdom in 2018. There is a public health need for strategies on how to deploy existing and novel antibiotics to minimise the risk of resistance development. As rapid point-of-care tests (POCTs) to predict susceptibility are coming to clinical use, coupling the introduction of an antibiotic with diagnostics that can slow resistance emergence may offer a novel paradigm for maximising antibiotic benefits. Gepotidacin is a novel antibiotic with known resistance and resistance-predisposing mutations. In particular, a mutation that confers resistance to ciprofloxacin acts as the ‘stepping-stone’ mutation to gepotidacin resistance. Aim: To investigate how POCTs detecting Neisseria gonorrhoeae resistance mutations for ciprofloxacin and gepotidacin can be used to minimise the risk of resistance development to gepotidacin. Methods: We use individual-based stochastic simulations to formally investigate the aim. Results: The level of testing needed to reduce the risk of resistance development depends on the mutation rate under treatment and the prevalence of stepping-stone mutations. A POCT is most effective if the mutation rate under antibiotic treatment is no more than two orders of magnitude above the mutation rate without treatment and the prevalence of stepping-stone mutations is 1–13%. Conclusion: Mutation frequencies and rates should be considered when estimating the POCT usage required to reduce the risk of resistance development in a given population. Molecular POCTs for resistance mutations and stepping-stone mutations to resistance are likely to become important tools in antibiotic stewardship

    Prevalence, regional distribution, and trends of antimicrobial resistance among female outpatients with urine Klebsiella spp. isolates: a multicenter evaluation in the United States between 2011 and 2019

    No full text
    Abstract Background Antimicrobial resistance research in uncomplicated urinary tract infection typically focuses on the main causative pathogen, Escherichia coli; however, little is known about the antimicrobial resistance burden of Klebsiella species, which can also cause uncomplicated urinary tract infections. This retrospective cohort study assessed the prevalence and geographic distribution of antimicrobial resistance among Klebsiella species and antimicrobial resistance trends for K. pneumoniae in the United States (2011–2019). Methods K. pneumoniae and K. oxytoca urine isolates (30-day, non-duplicate) among female outpatients (aged ≥ 12 years) with presumed uUTI at 304 centers in the United States were classified by resistance phenotype(s): not susceptible to nitrofurantoin, trimethoprim/sulfamethoxazole, or fluoroquinolone, extended-spectrum β-lactamase-positive/not susceptible; and multidrug-resistant based on ≥ 2 and ≥ 3 resistance phenotypes. Antimicrobial resistance prevalence by census division and age, as well as antimicrobial resistance trends over time for Klebsiella species, were assessed using generalized estimating equations. Results 270,552 Klebsiella species isolates were evaluated (250,719 K. pneumoniae; 19,833 K. oxytoca). The most frequent resistance phenotypes in 2019 were nitrofurantoin not susceptible (Klebsiella species: 54.0%; K. pneumoniae: 57.3%; K. oxytoca: 15.1%) and trimethoprim/sulfamethoxazole not susceptible (Klebsiella species: 10.4%; K. pneumoniae: 10.6%; K. oxytoca: 8.6%). Extended-spectrum β-lactamase-positive/not susceptible prevalence was 5.4%, 5.3%, and 6.8%, respectively. K. pneumoniae resistance phenotype prevalence varied (p  50% throughout). Conclusions There is a high antimicrobial resistance prevalence and increasing antimicrobial resistance trends among K. pneumoniae isolates from female outpatients in the United States with presumed uncomplicated urinary tract infection. Awareness of K. pneumoniae antimicrobial resistance helps to optimize empiric uncomplicated urinary tract infection treatment

    Determination of Disk Diffusion and MIC Quality Control Ranges for GSK1322322, a Novel Peptide Deformylase Inhibitor â–¿

    No full text
    GSK1322322 is a novel peptide deformylase inhibitor in the early phase of development for treatment of complicated bacterial skin and skin structure infection and hospitalized community-acquired pneumonia. This quality control (QC) study was performed to establish broth microdilution and disk diffusion QC ranges for strains Staphylococcus aureus ATCC 29213 (MIC range, 1 to 4 μg/ml), Haemophilus influenzae ATCC 49247 (MIC and disk diffusion zone diameter ranges, 0.5 to 4 μg/ml and 20 to 28 mm, respectively), Streptococcus pneumoniae ATCC 49619 (MIC and disk diffusion zone diameter ranges, 0.12 to 0.5 μg/ml and 23 to 30 mm, respectively), and S. aureus ATCC 25923 (disk diffusion zone diameter range, 18 to 26 mm). These ranges are crucial for evaluating GSK1322322 potency as it progresses through clinical trials
    corecore