6 research outputs found

    Midfrontal theta transcranial alternating current stimulation modulates behavioural adjustment after error execution

    Get PDF
    Cognitive control during conflict monitoring, error processing, and post-error adjustment appear to be associated with the occurrence of midfrontal theta (MFϴ). While this association is supported by correlational EEG studies, much less is known about the possible causal link between MFϴ and error and conflict processing. In the present study, we aimed to explore the role of band-specific effects in modulating the error system during a conflict resolution. In turn, we delivered transcranial alternating current stimulation (tACS) at different frequency bands (delta δ, theta θ, alpha α, beta β, gamma γ) and sham stimulation over the medial frontal cortex (MFC) in 36 healthy participants performing a modified version of the Flanker task. Task performance and reports about the sensations (e.g. visual flickering, cutaneous burning) induced by the different frequency bands, were also recorded. We found that online θ-tACS increased the response speed to congruent stimuli after error execution with respect to sham stimulation. Importantly, the accuracy following the errors did not decrease because of speed-accuracy trade off. Moreover, tACS evoked visual and somatosensory sensations were significantly stronger at α-tACS and β-tACS compared to other frequencies. Our findings suggest that theta activity plays a causative role in modulating behavioural adjustments during perceptual choices in a stimulus-response conflict task. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Lt

    Apparent biological motion in first and third person perspective

    Get PDF
    Apparent biological motion is the perception of plausible movements when two alternating images depicting the initial and final phase of an action are presented at specific stimulus onset asynchronies. Here, we show lower subjective apparent biological motion perception when actions are observed from a first relative to a third visual perspective. These findings are discussed within the context of sensorimotor contributions to body ownership

    The impact of multisensory integration and perceptual load in virtual reality settings on performance, workload and presence

    Get PDF
    Real-world experience is typically multimodal. Evidence indicates that the facilitation in the detection of multisensory stimuli is modulated by the perceptual load, the amount of information involved in the processing of the stimuli. Here, we used a realistic virtual reality environment while concomitantly acquiring Electroencephalography (EEG) and Galvanic Skin Response (GSR) to investigate how multisensory signals impact target detection in two conditions, high and low perceptual load. Different multimodal stimuli (auditory and vibrotactile) were presented, alone or in combination with the visual target. Results showed that only in the high load condition, multisensory stimuli significantly improve performance, compared to visual stimulation alone. Multisensory stimulation also decreases the EEG-based workload. Instead, the perceived workload, according to the "NASA Task Load Index" questionnaire, was reduced only by the trimodal condition (i.e., visual, auditory, tactile). This trimodal stimulation was more effective in enhancing the sense of presence, that is the feeling of being in the virtual environment, compared to the bimodal or unimodal stimulation. Also, we show that in the high load task, the GSR components are higher compared to the low load condition. Finally, the multimodal stimulation (Visual-Audio-Tactile-VAT and Visual-Audio-VA) induced a significant decrease in latency, and a significant increase in the amplitude of the P300 potentials with respect to the unimodal (visual) and visual and tactile bimodal stimulation, suggesting a faster and more effective processing and detection of stimuli if auditory stimulation is included. Overall, these findings provide insights into the relationship between multisensory integration and human behavior and cognition

    SARS-CoV-2-Associated ssRNAs Activate Human Neutrophils in a TLR8-Dependent Fashion

    Get PDF
    COVID-19 disease is characterized by a dysregulation of the innate arm of the immune system. However, the mechanisms whereby innate immune cells, including neutrophils, become activated in patients are not completely understood. Recently, we showed that GU-rich RNA sequences from the SARS-CoV-2 genome (i.e., SCV2-RNA1 and SCV2-RNA2) activate dendritic cells. To clarify whether human neutrophils may also represent targets of SCV2-RNAs, neutrophils were treated with either SCV2-RNAs or, as a control, R848 (a TLR7/8 ligand), and were then analyzed for several functional assays and also subjected to RNA-seq experiments. Results highlight a remarkable response of neutrophils to SCV2-RNAs in terms of TNFα, IL-1ra, CXCL8 production, apoptosis delay, modulation of CD11b and CD62L expression, and release of neutrophil extracellular traps. By RNA-seq experiments, we observed that SCV2-RNA2 promotes a transcriptional reprogramming of neutrophils, characterized by the induction of thousands of proinflammatory genes, similar to that promoted by R848. Furthermore, by using CU-CPT9a, a TLR8-specific inhibitor, we found that SCV2-RNA2 stimulates neutrophils exclusively via TLR8-dependent pathways. In sum, our study proves that single-strand RNAs from the SARS-CoV-2 genome potently activate human neutrophils via TLR8, thus uncovering a potential mechanism whereby neutrophils may contribute to the pathogenesis of severe COVID-19 disease

    Visual and cross-modal cues increase the identification of overlapping visual stimuli in Balint’s syndrome

    No full text
    Introduction: Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia. Method: We report a detailed analysis of clinical symptoms and an 18F-fluorodeoxyglucose (FDG) brain positron emission tomography/computed tomography (PET/CT) study of a patient affected by Balint’s syndrome, a rare and invasive visual–spatial disorder following bilateral parieto-occipital lesions. An experiment was conducted to investigate the effects of visual and nonvisual cues on performance in tasks involving the recognition of overlapping pictures. Four modalities of sensory cues were used: visual, tactile, olfactory, and auditory. Results: Data from neuropsychological tests showed the presence of ocular apraxia, optic ataxia, and simultanagnosia. The results of the experiment indicate a positive effect of the cues on the recognition of overlapping pictures, not only in the identification of the congruent valid-cued stimulus (target) but also in the identification of the other, noncued stimuli. All the sensory modalities analyzed (except the auditory stimulus) were efficacious in terms of increasing visual recognition. Conclusions: Cross-modal integration improved the patient’s ability to recognize overlapping figures. However, while in the visual unimodal modality both bottom-up (priming, familiarity effect, disengagement of attention) and top-down processes (mental representation and short-term memory, the endogenous orientation of attention) are involved, in the cross-modal integration it is semantic representations that mainly activate visual recognition processes. These results are potentially useful for the design of rehabilitation training for attentional and visual–perceptual deficits

    Visual and cross-modal cues increase the identification of overlapping visual stimuli in Balint's syndrome

    No full text
    Cross-modal interactions improve the processing of external stimuli, particularly when an isolated sensory modality is impaired. When information from different modalities is integrated, object recognition is facilitated probably as a result of bottom-up and top-down processes. The aim of this study was to investigate the potential effects of cross-modal stimulation in a case of simultanagnosia
    corecore