291 research outputs found

    Electromyoneurography and laboratory findings in a case of Guillain-Barré syndrome after second dose of Pfizer COVID-19 vaccine

    Get PDF
    Guillain-Barre syndrome (GBS) is an acute immune-mediated disease of the peripheral nerves and nerve roots (polyradiculoneuropathy) that is usually elicited by various infections. We present a case of GBS after receiving the second dose of Pfizer-COVID 19 vaccine. Diagnosis was made after performing an accurate clinical examination, electromyoneurography and laboratory tests. In particular, anti-ganglioside antibo-dies have tested positive. During this pandemic with ongoing worldwide mass vaccination campaign, it is critically important for clinicians to rapidly recognize neurological complications or other side effects associated with COVID-19 vaccinatio

    Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or /SDS-PAGE combined with nLC-ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in streptococcus thermophilus

    Get PDF
    Protein interactions are essential elements for the biological machineries underlying biochemical and physiological mechanisms indispensable for microorganism life. By using mono-dimensional blue native polyacrylamide gel electrophoresis (1D-BN-PAGE), two-dimensional blue native/urea-PAGE (2D-BN/urea-PAGE) and two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE), membrane protein complexes of Streptococcus thermophilus were resolved and visualized. Protein complex and oligomer constituents were then identified by nLC-ESI-LIT-MS/MS. In total, 65 heteromeric and 30 homomeric complexes were observed, which were then associated with 110 non-redundant bacterial proteins. Protein machineries involved in polysaccharide biosynthesis, molecular uptake, energy metabolism, cell division, protein secretion, folding and chaperone activities were highly represented in electrophoretic profiles; a number of homomeric moonlighting proteins were also identified. Information on hypothetical proteins was also derived. Parallel genome sequencing unveiled that the genes coding for the enzymes involved in exopolysaccharide biosynthesis derive from two separate clusters, generally showing high variability between bacterial strains, which contribute to a unique, synchronized and active synthetic module. The approach reported here paves the way for a further functional characterization of these protein complexes and will facilitate future studies on their assembly and composition during various growth conditions and in different mutant backgrounds, with important consequences for biotechnological applications of this bacterium in dairy productions. Biological significance Combined proteomic procedures have been applied to the characterization of heteromultimeric and homomeric protein complexes from the membrane fraction of S. thermophilus. Protein machineries involved in polysaccharide biosynthesis, molecular uptake, energy metabolism, cell division, protein secretion, folding and chaperone activities were identified; information on hypothetical and moonlighting proteins were also derived. This study is original in the lactic bacteria context and maybe considered as preliminary to a deeper functional characterization of the corresponding protein complexes. Due to the large use of S. thermophilus as a starter for dairy productions, the data reported here may facilitate future investigations on protein complex assembly and composition under different experimental conditions or for bacterial strains having specific biotechnological applications

    Proteomic analysis of apricot fruit during ripening

    Get PDF
    Ripening of climacteric fruits involves a complex network of biochemical and metabolic changes that make them palatable and rich in nutritional and health-beneficial compounds. Since fruit maturation has a profound impact on human nutrition, it has been recently the object of increasing research activity by holistic approaches, especially on model species. Here we report on the original proteomic characterization of ripening in apricot, a widely cultivated species of temperate zones appreciated for its taste and aromas, whose cultivation is yet hampered by specific limitations. Fruits of Prunus armeniaca cv. Vesuviana were harvested at three ripening stages and proteins extracted and resolved by 1D and 2D electrophoresis. Whole lanes from 1D gels were subjected to shot-gun analysis that identified 245 gene products, showing preliminary qualitative differences between maturation stages. In parallel, differential analysis of 2D proteomic maps highlighted 106 spots as differentially represented among variably ripen fruits. Most of these were further identified by means of MALDI-TOF-PMF and nanoLC–ESI–LIT–MS/MS as enzymes involved in main biochemical processes influencing metabolic/structural changes occurring during maturation, i.e. organic acids, carbohydrates and energy metabolism, ethylene biosynthesis, cell wall restructuring and stress response, or as protein species linkable to peculiar fruit organoleptic characteristics. In addition to originally present preliminary information on the main biochemical changes that characterize apricot ripening, this study also provides indications for future marker-assisted selection breeding programs aimed to ameliorate fruit quality

    Article influence of the casein composite genotype on milk quality and coagulation properties in the endangered agerolese cattle breed

    Get PDF
    The aim of this study was the characterization of CSN1S1, CSN2 and CSN3 genetic variability in Agerolese cattle, and the investigation of the effect of casein composite genotypes (CSN1S1, CSN2 and CSN3) on quality and coagulation traits of the corresponding milk. To these purposes, blood and milk from 84 cows were sampled and analysed. Allele frequencies at CSN2 and CSN3 revealed no Hardy–Weinberg equilibrium in the population with a prevalence of allele A2 for CSN2 and allele B for CSN3. BBA1A2AB and BBA2A2AB composite genotypes were the most common in the population. BBA1A2AB showed a higher total solids and fat content (12.70 ± 0.16 and 3.93 ± 0.10, respectively), while BBA2A2BB showed the best coagulation properties (RCT 12.62 ± 0.81; k20 5.84 ± 0.37; a30 23.72 ± 1.10). Interestingly, the A2 allele of CSN2 was very widespread in the population; thus, it will be intriguing to verify if A2A2 Agerolese cattle milk and the derived cheese may have better nutraceutical characteristics

    Poplar woody root proteome during the transition dormancy-active growth

    Get PDF
    Woody plants living in temperate climates finely regulate their growth and development in relation to seasonal changes; their transition from vegetative to dormancy phase represents an adaptation to their environment. Events occurring in the shoot during onset/release from dormancy have been largely investigated, whereas in woody roots they remain completely unknown. In recent years, we have been interested in understanding the molecular and physiological events occurring in poplar woody root during release from dormancy. Here, we propose the results of a comparative analysis of the proteome of poplar woody root sampled at different time points: T0 (dormancy condition), T1 (release from dormancy), and T2 (full vegetative condition). This study identified proteins that may be involved in the long-term survival of a dormant root or landmarking a specific time point

    Streptomyces coelicolor Vesicles: Many Molecules to Be Delivered

    Get PDF
    Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particular, a total of 166 proteins involved in cell metabolism/differentiation, molecular processing/transport, and stress response were identified in MVs, the latter functional class also being important for bacterial morpho-physiological differentiation. A subset of these proteins was protected from degradation following treatment of MVs with proteinase K, indicating their localization inside the vesicles. Moreover, S. coelicolor MVs contained an array of metabolites, such as antibiotics, vitamins, amino acids, and components of carbon metabolism. In conclusion, this analysis provides detailed information on S. coelicolor MVs under basal conditions and on their corresponding content, which may be useful in the near future to elucidate vesicle biogenesis and functions. IMPORTANCE Streptomycetes are widely distributed in nature and characterized by a complex life cycle that involves morphological differentiation. They are very relevant in industry because they produce about half of all clinically used antibiotics, as well as other important pharmaceutical products of natural origin. Streptomyces coelicolor is a model organism for the study of bacterial differentiation and bioactive molecule production. S. coelicolor produces extracellular vesicles that carry many molecules, such as proteins and metabolites, including antibiotics. The elucidation of S. coelicolor extracellular vesicle cargo will help us to understand different aspects of streptomycete physiology, such as cell communication during differentiation and response to environmental stimuli. Moreover, the capability of these vesicles for carrying different kinds of biomolecules opens up new biotechnological possibilities related to drug delivery. Indeed, decoding the molecular mechanisms involved in cargo selection may lead to the customization of extracellular vesicle content

    Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice

    Get PDF
    Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration. \ua9 2015 Macmillan Publishers Limited All rights reserved

    Identification of RNA-binding proteins that partner with Lin28a to regulate Dnmt3a expression

    Get PDF
    Lin28 is an evolutionary conserved RNA-binding protein that plays important roles during embryonic development and tumorigenesis. It regulates gene expression through two different post-transcriptional mechanisms. The first one is based on the regulation of miRNA biogenesis, in particular that of the let-7 family, whose expression is suppressed by Lin28. Thus, loss of Lin28 leads to the upregulation of mRNAs that are targets of let-7 species. The second mechanism is based on the direct interaction of Lin28 with a large number of mRNAs, which results in the regulation of their translation. This second mechanism remains poorly understood. To address this issue, we purified high molecular weight complexes containing Lin28a in mouse embryonic stem cells (ESCs). Numerous proteins, co-purified with Lin28a, were identified by proteomic procedures and tested for their possible role in Lin28a-dependent regulation of the mRNA encoding DNA methyltransferase 3a (Dnmt3a). The results show that Lin28a activity is dependent on many proteins, including three helicases and four RNA-binding proteins. The suppression of four of these proteins, namely Ddx3x, Hnrnph1, Hnrnpu or Syncrip, interferes with the binding of Lin28a to the Dnmt3a mRNA, thus suggesting that they are part of an oligomeric ribonucleoprotein complex that is necessary for Lin28a activity
    • …
    corecore