89 research outputs found

    Female false positive exercise stress ECG testing - fact verses fiction

    Get PDF
    Exercise stress testing is a well validated cardiovascular investigation. Accuracy for treadmill stress electrocardiograph (ECG) testing has been documented at 60%. False positive stress ECGs (exercise ECG changes with non-obstructive disease on anatomical testing) are common, especially in women, limiting the effectiveness of the test. This study investigates the incidence and predictors of false positive stress ECG findings, referenced against stress echocardiography (SE) as a standard.Stress echocardiography was performed using the Bruce treadmill protocol. False positive stress ECG tests were defined as greater than 1mm of ST depression on ECG during exertion, without pain, with a normal SE. Potential causes for false positive tests were recorded before the test.Three thousand consecutive negative stress echocardiograms (1036 females, 34.5%) were analysed (age 59+/-14 years. False positive (F+) stress ECGs were documented in 565/3000 tests (18.8%). F+ stress ECGs were equally prevalent in females (194/1036, 18.7%) and males (371/1964, 18.9%, p=0.85 for the difference). Potential causes (hypertension, left ventricular hypertrophy, known coronary disease, arrhythmia, diabetes mellitus, valvular heart disease) were recorded in 36/194 (18.6%) of the female F+ ECG tests and 249/371 (68.2%) of the male F+ ECG tests (

    Key questions for modelling COVID-19 exit strategies

    Get PDF
    Combinations of intense non-pharmaceutical interventions ('lockdowns') were introduced in countries worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement lockdown exit strategies that allow restrictions to be relaxed while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, will allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. The roadmap requires a global collaborative effort from the scientific community and policy-makers, and is made up of three parts: i) improve estimation of key epidemiological parameters; ii) understand sources of heterogeneity in populations; iii) focus on requirements for data collection, particularly in Low-to-Middle-Income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health

    Constraints on the structure and seasonal variations of Triton's atmosphere from the 5 October 2017 stellar occultation and previous observations

    Get PDF
    Context. A stellar occultation by Neptune's main satellite, Triton, was observed on 5 October 2017 from Europe, North Africa, and the USA. We derived 90 light curves from this event, 42 of which yielded a central flash detection. Aims. We aimed at constraining Triton's atmospheric structure and the seasonal variations of its atmospheric pressure since the Voyager 2 epoch (1989). We also derived the shape of the lower atmosphere from central flash analysis. Methods. We used Abel inversions and direct ray-tracing code to provide the density, pressure, and temperature profiles in the altitude range similar to 8 km to similar to 190 km, corresponding to pressure levels from 9 mu bar down to a few nanobars. Results. (i) A pressure of 1.18 +/- 0.03 mu bar is found at a reference radius of 1400 km (47 km altitude). (ii) A new analysis of the Voyager 2 radio science occultation shows that this is consistent with an extrapolation of pressure down to the surface pressure obtained in 1989. (iii) A survey of occultations obtained between 1989 and 2017 suggests that an enhancement in surface pressure as reported during the 1990s might be real, but debatable, due to very few high S/N light curves and data accessible for reanalysis. The volatile transport model analysed supports a moderate increase in surface pressure, with a maximum value around 2005-2015 no higher than 23 mu bar. The pressures observed in 1995-1997 and 2017 appear mutually inconsistent with the volatile transport model presented here. (iv) The central flash structure does not show evidence of an atmospheric distortion. We find an upper limit of 0.0011 for the apparent oblateness of the atmosphere near the 8 km altitude.J.M.O. acknowledges financial support from the Portuguese Foundation for Science and Technology (FCT) and the European Social Fund (ESF) through the PhD grant SFRH/BD/131700/2017. The work leading to these results has received funding from the European Research Council under the European Community's H2020 2014-2021 ERC grant Agreement nffi 669416 "Lucky Star". We thank S. Para who supported some travels to observe the 5 October 2017 occultation. T.B. was supported for this research by an appointment to the National Aeronautics and Space Administration (NASA) Post-Doctoral Program at the Ames Research Center administered by Universities Space Research Association (USRA) through a contract with NASA. We acknowledge useful exchanges with Mark Gurwell on the ALMA CO observations. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www.cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/consortium).Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. J.L.O., P.S.-S., N.M. and R.D. acknowledge financial support from the State Agency for Research of the Spanish MCIU through the "Center of Excellence Severo Ochoa" award to the Instituto de Astrofisica de Andalucia (SEV-2017-0709), they also acknowledge the financial support by the Spanish grant AYA-2017-84637-R and the Proyecto de Excelencia de la Junta de Andalucia J.A. 2012-FQM1776. The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Programme, under Grant Agreement no. 687378, as part of the project "Small Bodies Near and Far" (SBNAF). P.S.-S. acknowledges financial support by the Spanish grant AYA-RTI2018-098657-J-I00 "LEO-SBNAF". The work was partially based on observations made at the Laboratorio Nacional de Astrofisica (LNA), Itajuba-MG, Brazil. The following authors acknowledge the respective CNPq grants: F.B.-R. 309578/2017-5; R.V.-M. 304544/2017-5, 401903/2016-8; J.I.B.C. 308150/2016-3 and 305917/2019-6; M.A. 427700/20183, 310683/2017-3, 473002/2013-2. This study was financed in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -Brasil (CAPES) -Finance Code 001 and the National Institute of Science and Technology of the e-Universe project (INCT do e-Universo, CNPq grant 465376/2014-2). G.B.R. acknowledges CAPES-FAPERJ/PAPDRJ grant E26/203.173/2016 and CAPES-PRINT/UNESP grant 88887.571156/2020-00, M.A. FAPERJ grant E26/111.488/2013 and A.R.G.Jr. FAPESP grant 2018/11239-8. B.E.M. thanks CNPq 150612/2020-6 and CAPES/Cofecub-394/2016-05 grants. Part of the photometric data used in this study were collected in the frame of the photometric observations with the robotic and remotely controlled telescope at the University of Athens Observatory (UOAO; Gazeas 2016). The 2.3 m Aristarchos telescope is operated on Helmos Observatory by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. Observations with the 2.3 m Aristarchos telescope were carried out under OPTICON programme. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730890. This material reflects only the authors views and the Commission is not liable for any use that may be made of the information contained therein. The 1. 2m Kryoneri telescope is operated by the Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing of the National Observatory of Athens. The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) is managed by the Fondazione Clement Fillietroz-ONLUS, which is supported by the Regional Government of the Aosta Valley, the Town Municipality of Nus and the "Unite des Communes valdotaines Mont-Emilius". The 0.81 m Main Telescope at the OAVdA was upgraded thanks to a Shoemaker NEO Grant 2013 from The Planetary Society. D.C. and J.M.C. acknowledge funds from a 2017 'Research and Education' grant from Fondazione CRT-Cassa di Risparmio di Torino. P.M. acknowledges support from the Portuguese Fundacao para a Ciencia e a Tecnologia ref. PTDC/FISAST/29942/2017 through national funds and by FEDER through COMPETE 2020 (ref. POCI010145 FEDER007672). F.J. acknowledges Jean Luc Plouvier for his help. S.J.F. and C.A. would like to thank the UCL student support observers: Helen Dai, Elise Darragh-Ford, Ross Dobson, Max Hipperson, Edward Kerr-Dineen, Isaac Langley, Emese Meder, Roman Gerasimov, Javier Sanjuan, and Manasvee Saraf. We are grateful to the CAHA, OSN and La Hita Observatory staffs. This research is partially based on observations collected at Centro Astronomico HispanoAleman (CAHA) at Calar Alto, operated jointly by Junta de Andalucia and Consejo Superior de Investigaciones Cientificas (IAA-CSIC). This research was also partially based on observation carried out at the Observatorio de Sierra Nevada (OSN) operated by Instituto de Astrofisica de Andalucia (CSIC). This article is also based on observations made with the Liverpool Telescope operated on the island of La Palma by Liverpool John Moores University in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias with financial support from the UK Science and Technology Facilities Council. Partially based on observations made with the Tx40 and Excalibur telescopes at the Observatorio Astrofisico de Javalambre in Teruel, a Spanish Infraestructura Cientifico-Tecnica Singular (ICTS) owned, managed and operated by the Centro de Estudios de Fisica del Cosmos de Aragon (CEFCA). Tx40 and Excalibur are funded with the Fondos de Inversiones de Teruel (FITE). A.R.R. would like to thank Gustavo Roman for the mechanical adaptation of the camera to the telescope to allow for the observation to be recorded. R.H., J.F.R., S.P.H. and A.S.L. have been supported by the Spanish projects AYA2015-65041P and PID2019-109467GB-100 (MINECO/FEDER, UE) and Grupos Gobierno Vasco IT1366-19. Our great thanks to Omar Hila and their collaborators in Atlas Golf Marrakech Observatory for providing access to the T60cm telescope. TRAPPIST is a project funded by the Belgian Fonds (National) de la Recherche Scientifique (F.R.S.-FNRS) under grant PDR T.0120.21. TRAPPIST-North is a project funded by the University of Liege, and performed in collaboration with Cadi Ayyad University of Marrakesh. E.J. is a FNRS Senior Research Associate

    The Prognostic Value of the Diastolic Stress Test in Patients Undergoing Treadmill Stress Echocardiography

    No full text
    Background: Exercise stress echocardiography (SE) is well validated for the evaluation of myocardial ischemia. Diastolic stress testing (DST) is recommended in the 2016 American Society of Echocardiography and European Association of Cardiovascular Imaging Guidelines for unexplained dyspnea. This study's aim was to prognostically evaluate the DST prospectively in a large stress testing population. Methods: Patients underwent SE with mitral E/e' measured before and after maximal treadmill exertion to estimate diastolic function. Patients were divided into four groups: group 1 (n = 201)—ischemic; group 2 (n = 1,563)—negative DST (E/e' < 12, E/e' < 12); group 3 (n = 68)—positive DST (E/e' < 12, E/e' ≥ 12); group 4 (n = 314)—high baseline E/e' (E/e' ≥ 12). Results: Consecutive patients (n = 2,201, 770 [35%] female; 58 ± 12 years) were followed after SE for 27,964 patient-months. Time to first heart failure event (composite of heart failure admission, worsening New York Heart Association class, worsening ejection fraction, or cardiovascular death) was analyzed and adjusted using Cox proportional hazards regression. Ischemic patients hazard ratio (HR) was 28, 95% CI, 17-44, P < .0005, for subsequent heart failure compared with negative DST patients. Nonischemic, positive DSTs were highly predictive (HR = 4.2; 95% CI, 1.6-11.0; P = .001); while high E/e' was not predictive (HR = 1.3; 95% CI, 0.7-2.4; P = .49) of future heart failure events. Conclusions: DST differentiates heart failure prognosis in patients with induced diastolic dysfunction. Ischemia predictably portends the worst heart failure outcomes, and nonischemic, positive diastolic stress tests predicted more events compared with negative tests. These prognostic data support and add to the recommendations of the 2016 guidelines

    Incremental value of ePLAR-the echocardiographic pulmonary to left atrial ratio in the assessment of sub-massive pulmonary emboli

    No full text
    Background: Acute pulmonary embolism (PE) is characterized hemodynamically by abrupt obstruction in trans-pulmonary blood flow. The echocardiographic Pulmonary to Left Atrial ratio (ePLAR, tricuspid regurgitation V-max/mitral E/e') has been validated as a non-invasive surrogate for trans-pulmonary gradient (TPG) that accurately differentiates pre-capillary from post-capillary chronic pulmonary hypertension. This study assessed ePLAR as an incremental echocardiographic assessment tool compared with traditional measures of right ventricular pressure and function. Methods: In total, 110 (57.4 +/- 17.6 years) patients with confirmed sub-massive pulmonary emboli with contemporaneous echocardiograms (0.3 +/- 0.9 days) were compared with 110 age-matched controls (AMC). Results: Tricuspid velocities were higher than AMC (2.6 +/- 0.6 m/s vs. 2.4 +/- 0.3 m/s, p = 2.9 m/s) and 32% (reduced tricuspid annular plane systolic excursion) to 70% with ePLAR >= 0.3 m/s. Conclusions: Raised ePLAR values in acute sub-massive pulmonary embolism suggest elevated trans-pulmonary gradients even in the absence of acutely increased pulmonary artery pressures. ePLAR dramatically increases the sensitivity of echocardiography for detection of hemodynamic perturbations in sub-massive pulmonary embolism patients, which may offer clinical utility in diagnosis and management

    Left Ventricular Global Strain Analysis by Two-Dimensional Speckle-Tracking Echocardiography: The Learning Curve

    No full text
    The application of left ventricular (LV) global strain by speckle-tracking is becoming more widespread, with the potential for incorporation into routine clinical echocardiography in selected patients. There are no guidelines or recommendations for the training requirements to achieve competency. The aim of this study was to determine the learning curve for global strain analysis and determine the number of studies that are required for independent reporting.Three groups of novice observers (cardiology fellows, cardiac sonographers, medical students) received the same standardized training module prior to undertaking retrospective global strain analysis on 100 patients over a period of 3\ua0months. To assess the effect of learning, quartiles of 25 patients were read successively by each blinded observer, and the results were compared to expert for correlation.Global longitudinal strain (GLS) had uniform learning curves and was the easiest to learn, requiring a minimum of 50 patients to achieve expert competency (intraclass correlation coefficient > 0.9) in all three groups over a period of 3\ua0months. Prior background knowledge in echocardiography is an influential factor affecting the learning for interobserver reproducibility and time efficiency. Short-axis strain analysis using global circumferential stain and global radial strain did not yield a comprehensive learning curve, and expert level was not achieved by the end of the study.There is a significant learning curve associated with LV strain analysis. We recommend a minimum of\ua050 studies for training to achieve competency in GLS analysis
    • …
    corecore