166 research outputs found
The connection between superconducting phase correlations and spin excitations in YBaCuO: A magnetic field study
One of the most striking universal properties of the
high-transition-temperature (high-) superconductors is that they are all
derived from the hole-doping of their insulating antiferromagnetic (AF) parent
compounds. From the outset, the intimate relationship between magnetism and
superconductivity in these copper-oxides has intrigued researchers. Evidence
for this link comes from neutron scattering experiments that show the
unambiguous presence of short-range AF correlations (excitations) in cuprate
superconductors. Even so, the role of such excitations in the pairing mechanism
and superconductivity is still a subject of controversy. For
YBaCuO, where controls the hole-doping level, the most
prominent feature in the magnetic excitations spectra is the ``resonance''.
Here we show that for underdoped YBaCuO, where and
are below the optimal values, modest magnetic fields suppress the resonance
significantly, much more so for fields approximately perpendicular rather than
parallel to the CuO planes. Our results indicate that the resonance
measures pairing and phase coherence, suggesting that magnetism plays an
important role in the superconductivity of cuprates. The persistence of a field
effect above favors mechanisms with preformed pairs in the normal state
of underdoped cuprates.Comment: 12 pages, 4 figures, Nature (in press
Interplay of Quantum Criticality and Geometric Frustration in Columbite
Motivated by CoNb2O6 (belonging to the columbite family of minerals), we
theoretically study the physics of quantum ferromagnetic Ising chains coupled
anti-ferromagnetically on a triangular lattice in the plane perpendicular to
the chain direction. We combine exact solutions of the chain physics with
perturbative approximations for the transverse couplings. When the triangular
lattice has an isosceles distortion (which occurs in the real material), the
T=0 phase diagram is rich with five different states of matter: ferrimagnetic,
N\'eel, anti-ferromagnetic, paramagnetic and incommensurate phases, separated
by quantum phase transitions. Implications of our results to experiments on
CoNb2O6 are discussed
High-transition-temperature superconductivity in the absence of the magnetic-resonance mode
The fundamental mechanism that gives rise to high-transition-temperature
(high-Tc) superconductivity in the copper oxide materials has been debated
since the discovery of the phenomenon. Recent work has focussed on a sharp
'kink' in the kinetic energy spectra of the electrons as a possible signature
of the force that creates the superconducting state. The kink has been related
to a magnetic resonance and also to phonons. Here we report that infrared
spectra of Bi2Sr2CaCu2O(8+d), (Bi-2212) show that this sharp feature can be
separated from a broad background and, interestingly, weakens with doping
before disappearing completely at a critical doping level of 0.23 holes per
copper atom. Superconductivity is still strong in terms of the transition
temperature (Tc approx 55 K), so our results rule out both the magnetic
resonance peak and phonons as the principal cause of high-Tc superconductivity.
The broad background, on the other hand, is a universal property of the copper
oxygen plane and a good candidate for the 'glue' that binds the electrons.Comment: 4 pages, 3 figure
Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice
The study of superfluid fermion pairs in a periodic potential has important
ramifications for understanding superconductivity in crystalline materials.
Using cold atomic gases, various condensed matter models can be studied in a
highly controllable environment. Weakly repulsive fermions in an optical
lattice could undergo d-wave pairing at low temperatures, a possible mechanism
for high temperature superconductivity in the cuprates. The lattice potential
could also strongly increase the critical temperature for s-wave superfluidity.
Recent experimental advances in the bulk include the observation of fermion
pair condensates and high-temperature superfluidity. Experiments with fermions
and bosonic bound pairs in optical lattices have been reported, but have not
yet addressed superfluid behavior. Here we show that when a condensate of
fermionic atom pairs was released from an optical lattice, distinct
interference peaks appear, implying long range order, a property of a
superfluid. Conceptually, this implies that strong s-wave pairing and
superfluidity have now been established in a lattice potential, where the
transport of atoms occurs by quantum mechanical tunneling and not by simple
propagation. These observations were made for unitarity limited interactions on
both sides of a Feshbach resonance. For larger lattice depths, the coherence
was lost in a reversible manner, possibly due to a superfluid to insulator
transition. Such strongly interacting fermions in an optical lattice can be
used to study a new class of Hamiltonians with interband and atom-molecule
couplings.Comment: accepted for publication in Natur
Single and two-particle energy gaps across the disorder-driven superconductor-insulator transition
The competition between superconductivity and localization raises profound
questions in condensed matter physics. In spite of decades of research, the
mechanism of the superconductor-insulator transition (SIT) and the nature of
the insulator are not understood. We use quantum Monte Carlo simulations that
treat, on an equal footing, inhomogeneous amplitude variations and phase
fluctuations, a major advance over previous theories. We gain new microscopic
insights and make testable predictions for local spectroscopic probes. The
energy gap in the density of states survives across the transition, but
coherence peaks exist only in the superconductor. A characteristic pseudogap
persists above the critical disorder and critical temperature, in contrast to
conventional theories. Surprisingly, the insulator has a two-particle gap scale
that vanishes at the SIT, despite a robust single-particle gap.Comment: 7 pages, 5 figures (plus supplement with 4 pages, 5 figures
Holographic Superconductor/Insulator Transition at Zero Temperature
We analyze the five-dimensional AdS gravity coupled to a gauge field and a
charged scalar field. Under a Scherk-Schwarz compactification, we show that the
system undergoes a superconductor/insulator transition at zero temperature in
2+1 dimensions as we change the chemical potential. By taking into account a
confinement/deconfinement transition, the phase diagram turns out to have a
rich structure. We will observe that it has a similarity with the RVB
(resonating valence bond) approach to high-Tc superconductors via an emergent
gauge symmetry.Comment: 25 pages, 23 figures; A new subsection on a concrete string theory
embedding added, references added (v2); Typos corrected, references added
(v3
Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors
Cuprates, ferropnictides and ferrochalcogenides are three classes of
unconventional high-temperature superconductors, who share similar phase
diagrams in which superconductivity develops after a magnetic order is
suppressed, suggesting a strong interplay between superconductivity and
magnetism, although the exact picture of this interplay remains elusive. Here
we show that there is a direct bridge connecting antiferromagnetic exchange
interactions determined in the parent compounds of these materials to the
superconducting gap functions observed in the corresponding superconducting
materials. High superconducting transition temperature is achieved when the
Fermi surface topology matches the form factor of the pairing symmetry favored
by local magnetic exchange interactions. Our result offers a principle guide to
search for new high temperature superconductors.Comment: 12 pages, 5 figures, 1 table, 1 supplementary materia
Imaging Cooper Pairing of Heavy Fermions in CeCoIn5
The Cooper pairing mechanism of heavy-fermion superconductors, while long
hypothesized as due to spin fluctuations, has not been determined. It is the
momentum space (k-space) structure of the superconducting energy gap delta(k)
that encodes specifics of this pairing mechanism. However, because the energy
scales are so low, it has not been possible to directly measure delta(k) for
any heavy-fermion superconductor. Bogoliubov quasiparticle interference (QPI)
imaging, a proven technique for measuring the energy gaps of high-Tc
superconductors, has recently been proposed as a new method to measure delta(k)
in heavy-fermion superconductors, specifically CeCoIn5. By implementing this
method, we immediately detect a superconducting energy gap whose nodes are
oriented along k||(+-1, +-1)pi/a0 directions. Moreover, we determine the
complete k-space structure of the delta(k) of a heavy-fermion superconductor.
For CeCoIn5, this novel information includes: the complex band structure and
Fermi surface of the hybridized heavy bands, the fact that highest magnitude
delta(k) opens on a high-k band so that gap nodes occur at quite unanticipated
k-space locations, and that the Bogoliubov quasiparticle interference patterns
are most consistent with dx2-y2 gap symmetry. The availability of such
quantitative heavy band- and gap-structure data will be critical in identifying
the microscopic mechanism of heavy fermion superconductivity in this material,
and perhaps in general.Comment: 14 pages, 4 figures, supplementary informatio
The particle number in Galilean holography
Recently, gravity duals for certain Galilean-invariant conformal field
theories have been constructed. In this paper, we point out that the spectrum
of the particle number operator in the examples found so far is not a necessary
consequence of the existence of a gravity dual. We record some progress towards
more realistic spectra. In particular, we construct bulk systems with
asymptotic Schrodinger symmetry and only one extra dimension. In examples, we
find solutions which describe these Schrodinger-symmetric systems at finite
density. A lift to M-theory is used to resolve a curvature singularity. As a
happy byproduct of this analysis, we realize a state which could be called a
holographic Mott insulator.Comment: 29 pages, 1 rudimentary figure; v2: typo in eqn (3.4), added comments
and ref
Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors
In high Tc superconductors the magnetic and electronic properties are
determined by the probability that valence electrons virtually jump from site
to site in the CuO2 planes, a mechanism opposed by on-site Coulomb repulsion
and favored by hopping integrals. The spatial extent of the latter is related
to transport properties, including superconductivity, and to the dispersion
relation of spin excitations (magnons). Here, for three antiferromagnetic
parent compounds (single-layer Bi2Sr0.99La1.1CuO6+delta, double-layer
Nd1.2Ba1.8Cu3O6 and infinite-layer CaCuO2) differing by the number of apical
atoms, we compare the magnetic spectra measured by resonant inelastic x-ray
scattering over a significant portion of the reciprocal space and with
unprecedented accuracy. We observe that the absence of apical oxygens increases
the in-plane hopping range and, in CaCuO2, it leads to a genuine 3D
exchange-bond network. These results establish a corresponding relation between
the exchange interactions and the crystal structure, and provide fresh insight
into the materials dependence of the superconducting transition temperature.Comment: 9 pages, 4 figures, 1 Table, 42 reference
- …