34 research outputs found

    Mitochondrial mosaics in the liver of 3 infants with mtDNA defects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In muscle cytochrome oxidase (COX) negative fibers (mitochondrial mosaics) have often been visualized.</p> <p>Methods</p> <p>COX activity staining of liver for light and electron microscopy, muscle stains, blue native gel electrophoresis and activity assays of respiratory chain proteins, their immunolocalisation, mitochondrial and nuclear DNA analysis.</p> <p>Results</p> <p>Three unrelated infants showed a mitochondrial mosaic in the liver after staining for COX activity, i.e. hepatocytes with strongly reactive mitochondria were found adjacent to cells with many negative, or barely reactive, mitochondria. Deficiency was most severe in the patient diagnosed with Pearson syndrome. Ragged-red fibers were absent in muscle biopsies of all patients. Enzyme biochemistry was not diagnostic in muscle, fibroblasts and lymphocytes. Blue native gel electrophoresis of liver tissue, but not of muscle, demonstrated a decreased activity of complex IV; in both muscle and liver subcomplexes of complex V were seen. Immunocytochemistry of complex IV confirmed the mosaic pattern in two livers, but not in fibroblasts. MRI of the brain revealed severe white matter cavitation in the Pearson case, but only slight cortical atrophy in the Alpers-Huttenlocher patient, and a normal image in the 3rd. MtDNA in leucocytes showed a common deletion in 50% of the mtDNA molecules of the Pearson patient. In the patient diagnosed with Alpers-Huttenlocher syndrome, mtDNA was depleted for 60% in muscle. In the 3rd patient muscular and hepatic mtDNA was depleted for more than 70%. Mutations in the nuclear encoded gene of <it>POLG </it>were subsequently found in both the 2nd and 3rd patients.</p> <p>Conclusion</p> <p>Histoenzymatic COX staining of a liver biopsy is fast and yields crucial data about the pathogenesis; it indicates whether mtDNA should be assayed. Each time a mitochondrial disorder is suspected and muscle data are non-diagnostic, a liver biopsy should be recommended. Mosaics are probably more frequent than observed until now. A novel pathogenic mutation in <it>POLG </it>is reported.</p> <p>Tentative explanations for the mitochondrial mosaics are, in one patient, unequal partition of mutated mitochondria during mitoses, and in two others, an interaction between products of several genes required for mtDNA maintenance.</p

    A propos d'un cas d'encéphalopathie traitable du nourrisson

    Full text link
    peer reviewedDiagnosis of Tyrosine Hydroxylase Deficiency (THD) in a 6 months old baby, its broad phenotypic spectrum and treatment

    PGM1 deficiency diagnosed during an endocrine work-up of low IGF-1 mediated growth failure

    No full text
    Objective and importance: Phosphoglucomutase 1 (PGM1) deficiency, first described as a glycogenosis (type XIV) is also a congenital disorder of glycosylation (CDG). We want to illustrate the wide clinical spectrum of PGM1 deficiency and in particular the associated disturbance in glucose metabolism and the endocrine dysfunction. Treatment with d-galactose is experimental. Case presentation: PGM1 deficiency was diagnosed in an 8-year-old boy, who was referred because of an unexplained complex syndrome, including recurrent hypoglycaemia and low IGF-1 mediated growth failure. Conclusion: The timely diagnosis of this disorder is particularly important, because d-galactose treatment can improve the latter symptoms

    Shwachman-Diamond syndrome presenting with early ichthyosis, associated dermal and epidermal intracellular lipid droplets, hypoglycemia, and later distinctive clinical SDS phenotype

    No full text
    Shwachman–Diamond syndrome (SDS) is a recessive ribosomopathy, characterized by bone marrow failure and exocrine pancreatic insufficiency (ePI) often associated with neurodevelopmental and skeletal abnormalities. The aim of this report is to describe a SDS patient with early ichthyosis associated with dermal and epidermal intracellular lipid droplets (iLDs), hypoglycemia and later a distinctive clinical SDS phenotype. At 3 months of age, she had ichthyosis, growth retardation, and failure to thrive. She had not cytopenia. Ultrasonography (US) showed pancreatic diffuse high echogenicity. Subsequently fasting hypoketotic hypoglycemia occurred without permanent hepatomegaly or hyperlipidemia. Continuous gavage feeding was followed by clinical improvement including ichthyosis and hypoglycemia. After 14 months of age, she developed persistent neutropenia and ePI consistent with SDS. The ichthyotic skin biopsy, performed at 5 months of age, disclosed iLDs in all epidermal layers, in melanocytes, eccrine sweat glands, Schwann cells and dermal fibroblasts. These iLDs were reminiscent of those described in Dorfman–Chanarin syndrome (DCS) or Wolman's disease. Both LIPA and CGI-58 analysis did not revealed pathogenic mutation. By sequencing SBDS, a compound heterozygous for a previously reported gene mutation (c.258 + 2T>C) and a novel mutation (c.284T>G) were found. Defective SBDS may hypothetically interfere as in DCS, with neutral lipid metabolism and play a role in the SDS phenotype such as ichthyosis with dermal and epidermal iLDs and hypoglycemia. This interference with neutral lipid metabolism must most likely occur in the cytoplasm compartment as in DCS and not in the lysosomal compartment as in Wolman's disease. © 2016 Wiley Periodicals, Inc.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Sustained OMA1-mediated integrated stress response is beneficial for spastic ataxia type 5

    No full text
    : AFG3L2 is a mitochondrial protease exerting protein quality control in the inner mitochondrial membrane (IMM). Heterozygous AFG3L2 mutations cause Spinocerebellar Ataxia type 28 (SCA28) or Dominant Optic Atrophy type 12 (DOA12), while biallelic AFG3L2 mutations result in the rare and severe Spastic Ataxia type 5 (SPAX5). The clinical spectrum of SPAX5 includes childhood-onset cerebellar ataxia, spasticity, dystonia, and myoclonic epilepsy. We previously reported that the absence or mutation of AFG3L2 leads to the accumulation of mitochondria-encoded proteins, causing the over-activation of the stress-sensitive protease OMA1, which over-processes OPA1, leading to mitochondrial fragmentation. Recently, OMA1 has been identified as the pivotal player communicating mitochondrial stress to the cytosol via a pathway involving the IMM protein DELE1 and the cytosolic kinase HRI, thus eliciting the integrated stress response (ISR). In general, the ISR reduces global protein synthesis and drives the expression of cytoprotective genes that allow cells to endure proteotoxic stress. However, the relevance of the OMA1-DELE1-HRI axis in vivo, and especially in a human CNS disease context, has been poorly documented so far. In this work, we demonstrated that mitochondrial proteotoxicity in the absence/mutation of AFG3L2 activates the OMA1-DELE1-HRI pathway eliciting the ISR. We indeed found enhanced OMA1-dependent processing of DELE1 upon depletion of AFG3L2. Also, in both skin fibroblasts from SPAX5 patients (including a novel case) and in the cerebellum of Afg3l2-/- mice we detected increased phosphorylation of the α-subunit of the eukaryotic translation initiation factor 2 (eIF2α), increased levels of ATF4 and strong upregulation of its downstream targets (Chop, Chac1, Ppp1r15a and Ffg21). Silencing of DELE1 or HRI in SPAX5 fibroblasts (where OMA1 is overactivated at basal state) reduces eIF2α phosphorylation and affects cell growth. In agreement, pharmacological potentiation of ISR via Sephin-1, a drug that selectively inhibits the stress-induced eIF2alpha phosphatase GADD34 (encoded by Ppp1r15a), improved cell growth of SPAX5 fibroblasts, and cell survival and dendritic arborization ex vivo in primary Afg3l2-/- Purkinje neurons (PNs). Notably, Sephin-1 treatment in vivo extended the life span of Afg3l2-/- mice, improved PN morphology, mitochondrial ultrastructure and respiratory capacity. These data indicate that activation of the OMA1-DELE1-HRI pathway is protective in the context of SPAX5. Pharmacological tuning of the ISR may represent a future therapeutic strategy for SPAX5 and other cerebellar ataxias caused by impaired mitochondrial proteostasis
    corecore