286 research outputs found

    Sulfur Degassing From Volcanoes: Source Conditions, Surveillance, Plume Chemistry and Earth System Impacts

    Get PDF
    International audienceDespite its relatively minor abundance in magmas (compared with H2O and CO2), sulfur degassing from volcanoes is of tremendous significance. It can exert substantial influence on magmatic evolution (potentially capable of triggering eruptions); represents one of the most convenient opportunities for volcano monitoring and hazard assessment; and can result in major impacts on the atmosphere, climate and terrestrial ecosystems at a range of spatial and temporal scales. The complex behavior of sulfur in magmas owes much to its multiple valence states (-II, 0, IV, VI), speciation (e.g., S2, H2S, SO2, OCS and SO3 in the gas phase; S2-, SO42- and SO32- in the melt; and non-volatile solid phases such as pyrrhotite and anhydrite), and variation in stable isotopic composition (32S, 33S, 34S and 36S; e.g., Métrich and Mandeville 2010). Sulfur chemistry in the atmosphere is similarly rich involving gaseous and condensed phases and invoking complex homogeneous and heterogeneous chemical reactions. Sulfur degassing from volcanoes and geothermal areas is also important since a variety of microorganisms thrive based on the redox chemistry of sulfur: by reducing sulfur, thiosulfate, sulfite and sulfate to H2S, or oxidizing sulfur and H2S to sulfate (e.g., Takano et al. 1997; Amend and Shock 2001; Shock et al. 2010). Understanding volcanic sulfur degassing thus provides vital insights into magmatic, volcanic and hydrothermal processes; the impacts of volcanism on the Earth system; and biogeochemical cycles. Here, we review the causes of variability in sulfur abundance and speciation in different geodynamic contexts; the measurement of sulfur emissions from volcanoes; links between subsurface processes and surface observations; sulfur chemistry in volcanic plumes; and the consequences of sulfur degassing for climate and the environment

    Thermal Constraints on the Emplacement Rate of a Large Intrusive Complex: The Manaslu Leucogranite, Nepal Himalaya

    Get PDF
    The emplacement of the Manaslu leucogranite body (Nepal, Himalaya) has been modelled as the accretion of successive sills. The leucogranite is characterized by isotopic heterogeneities suggesting limited magma convection, and by a thin (<100 m) upper thermal aureole. These characteristics were used to constrain the maximum magma emplacement rate. Models were tested with sills injected regularly over the whole duration of emplacement and with two emplacement sequences separated by a repose period. Additionally, the hypothesis of a tectonic top contact, with unroofing limiting heat transfer during magma emplacement, was evaluated. In this latter case, the upper limit for the emplacement rate was estimated at 3·4 mm/year (or 1·5 Myr for 5 km of granite). Geological and thermobarometric data, however, argue against a major role of fault activity in magma cooling during the leucogranite emplacement. The best model in agreement with available geochronological data suggests an emplacement rate of 1 mm/year for a relatively shallow level of emplacement (granite top at 10 km), uninterrupted by a long repose period. The thermal aureole temperature and thickness, and the isotopic heterogeneities within the leucogranite, can be explained by the accretion of 20-60 m thick sills intruded every 20 000-60 000 years over a period of 5 Myr. Under such conditions, the thermal effects of granite intrusion on the underlying rocks appear limited and cannot be invoked as a cause for the formation of migmatite

    High-resolution 40Ar/39Ar chronostratigraphy of the post-caldera (<20 ka) volcanic activity at Pantelleria, Sicily Strait

    Get PDF
    The island of Pantelleria (Sicily Strait), the type locality for pantellerite, has been the locus of major calderaforming eruptions that culminated, ca. 50 ka ago, in the formation of the Cinque Denti caldera produced by the Green Tuff eruption. The post-caldera silicic activity since that time has been mostly confined inside the caldera and consists of smaller-energy eruptions represented by more than twenty coalescing pantelleritic centers structurally controlled by resurgence and trapdoor faulting of the caldera floor. A high-resolution 40Ar/39Ar study was conducted on key units spanning the recent (post-20 ka) intracaldera activity to better characterize the present-day status (and forecast the short-term behavior of) the system based on the temporal evolution of the latest eruptions. The new 40Ar/39Ar data capture a long-term (N15 ka) decline in eruption frequency with a shift in eruptive pace from 3.5 ka−1 to 0.8 ka−1 associated with a prominent paleosol horizon marking the only recognizable volcanic stasis around 12–14 ka. This shift in extraction frequency occurswithoutmajor changes in eruptive style, and is paralleled by a subtle trend of decreasingmelt differentiation index. We speculate that this decline probably occurred (i) without short-term variations in melt production/differentiation rate in a steadystate compositionally-zoned silicic reservoir progressively tapped deeper through the sequence, and (ii) that it was possibly modulated by outboard eustatic forcing due to the 140 m sea level rise over the past 21 ka. The intracaldera system is experiencing a protracted stasis since 7 ka. Coupled with recent geodetic evidence of deflation and subsidence of the caldera floor, the system appears today to be on a wane with no temporal evidence for a short-term silicic eruption

    Granite magmatism and mantle filiation

    Get PDF
    Current granite magma generation models essentially reduce to two groups: (1) intra-crustal melting and (2) basaltic origin. A mixed, crustal, and basaltic origin and therefore a mantle filiation has been proposed for most granite magma types. In contrast, strongly peraluminous silicic magmas such as two-mica leucogranites have been classically interpreted as products of pure crustal melting. In this paper, we re-examine this interpretation and the evidence for considering leucogranites as unique among granite types. In the first part, some key aspects of the intra-crustal melting model are reviewed. Classical assumptions are discussed, such as the use of migmatites to infer granite generation processes. Our knowledge of crustal melt production is still incomplete, and fluid-present H2O-undersaturated melting should be considered in addition to mica dehydration melting reactions. The source rock remains essential as a concept despite difficulties in the identification of source lithologies from their geochemical and mineralogical signatures. Incorporating spatial and temporal variability at the source and the possibility of external inputs (fluids, magmas) would represent useful evolutions of the model. Thermal considerations bring strong constraints on the intra-crustal melting model since the absence of mafic magmas reduces possible external heat sources for melting. In the second part, the origin of a strongly peraluminous silicic volcanic suite, the Macusani Volcanics (SE Peru), is detailed. Magmas were generated in a mid-crustal anatectic zone characterized by high temperatures and heat fluxes. Crustal metamorphic rocks (metapelites) were dominant in the source region, although Ba-, Sr- and La-rich calcic plagioclase cores and some biotite and sanidine compositions point to the involvement of a mantle component. The heat necessary for melting was supplied by mafic mainly potassic-ultrapotassic magmas which also partly mixed and hybridized with the crustal melts. The Macusani Volcanics provide an example of a crustal peraluminous silicic suite generated with a contribution from the mantle in the form of mafic magmas intruded in the source region. This, as well as the limitations of the intra-crustal melting model, establishes that a mantle filiation is possible for peraluminous leucogranites as for most other crustal (S-, I- and A-type) peraluminous and metaluminous granites. This stresses the critical importance of the mantle for granite generation and opens the way for unification of granite generation processes

    The effect of sulfur on the glass transition temperature in anorthite-diopside eutectic glasses

    Get PDF
    International audienceThe effect of sulfur dissolved in anorthite-diopside eutectic (AD) glasses on the glasstransition temperature (Tg) has been investigated via Differential Scanning Calorimetricmeasurements (DSC) and Thermogravimetric Analysis (TGA) under moderately reducing tooxidizing conditions.In a series of AD glasses, we have measured the change in Tg as a function of S contentpresent as SO42- (HS- is also identified to a lesser extent) and H2O content. The AD glassesinvestigated have S contents ranging from 0 to 7519 ppm and H2O contents ranging from 0 to5.3 wt.%. In agreement with previous studies, increasing H2O content induces a strongexponential decrease in Tg: volatile free AD glass has a Tg at 758±13C and AD glass with5.18±0.48 wt.% H2O has a Tg at 450±11C. The change in Tg as a function of H2O is wellreproducedwith a third-order polynomial function and has been used to constrain Tg at anyH2O content. The effect of S on Tg is almost inexistent or towards a decrease in Tg withincreasing S content. For instance, at ~2.4 wt.% H2O, the addition of S induces a change inTg from 585±10°C with 0 ppm S to 523±3C with 2365±138 ppm S; a further increase in Sup to 7239±90 ppm S does not induce a dramatic change in Tg measured at 529±2C.The limited effect of S on the glass transition temperature contrasts with recent spectroscopicmeasurements suggesting that S dissolution as SO42- groups provokes an increase in thepolymerization degree. We propose an alternative view which reconciles the spectroscopicevidence with the Tg measurements. The dissolution of S as SO42- does not induce theformation of Si-O-Si molecular bonding through consumption of available non-bridgingoxygens (NBO) but instead we suggest that Si-O-S molecular bonds are formed which are not detectable by DSC measurements but mimic the increase in glass polymerization. Therefore, spectroscopic measurements must be used with caution in order to extract melt physicalproperties

    Economic geology: Volatile destruction

    Get PDF
    International audienceDirect evidence for the role of volatiles in magmatic ore formation has been elusive. Magma degassing at Merapi volcano in Indonesia is found to be directly linked to the selective leaching of metals from sulphide melts that ultimately form ore deposits

    Hydroclimate variability in the central Mediterranean during MIS 17 interglacial (Middle Pleistocene) highlights timing offset with monsoon activity

    Get PDF
    Mediterranean climates are characterized by warm, dry summers and mild, rainy winters. Previous studies suggest that over the last 1.36 Myr, Mediterranean winter rainfalls were in phase with the African monsoon. Here we present a high-resolution terrestrial and marine dataset for the Marine Isotope Stage 17 interglacial (Middle Pleistocene) from Southern Italy, showing that precipitation rates and regimes in the central Mediterranean varied independently of the monsoon system. Specifically, events of extreme summer precipitation were promoted by increased regional insolation rates and/or extratropical cyclones, and their magnitude was further enhanced by the advection of cool and humid North Atlantic air during stadials. Our findings provide new information on the short- to mid-term natural hydroclimatic variability of the Mediterranean basin, and offer new critical insights on land–ocean interactions at the regional scale by complementing previous analyses on the displacement of storm tracks toward southern Europe

    Granite magmatism and mantle filiation

    Get PDF
    Current granite magma generation models essentially reduce to two groups: (1) intra-crustal melting and (2) basaltic origin. A mixed, crustal, and basaltic origin and therefore a mantle filiation has been proposed for most granite magma types. In contrast, strongly peraluminous silicic magmas such as two-mica leucogranites have been classically interpreted as products of pure crustal melting. In this paper, we re-examine this interpretation and the evidence for considering leucogranites as unique among granite types. In the first part, some key aspects of the intra-crustal melting model are reviewed. Classical assumptions are discussed, such as the use of migmatites to infer granite generation processes. Our knowledge of crustal melt production is still incomplete, and fluid-present H2O-undersaturated melting should be considered in addition to mica dehydration melting reactions. The source rock remains essential as a concept despite difficulties in the identification of source lithologies from their geochemical and mineralogical signatures. Incorporating spatial and temporal variability at the source and the possibility of external inputs (fluids, magmas) would represent useful evolutions of the model. Thermal considerations bring strong constraints on the intra-crustal melting model since the absence of mafic magmas reduces possible external heat sources for melting. In the second part, the origin of a strongly peraluminous silicic volcanic suite, the Macusani Volcanics (SE Peru), is detailed. Magmas were generated in a mid-crustal anatectic zone characterized by high temperatures and heat fluxes. Crustal metamorphic rocks (metapelites) were dominant in the source region, although Ba-, Sr- and La-rich calcic plagioclase cores and some biotite and sanidine compositions point to the involvement of a mantle component. The heat necessary for melting was supplied by mafic mainly potassic–ultrapotassic magmas which also partly mixed and hybridized with the crustal melts. The Macusani Volcanics provide an example of a crustal peraluminous silicic suite generated with a contribution from the mantle in the form of mafic magmas intruded in the source region. This, as well as the limitations of the intra-crustal melting model, establishes that a mantle filiation is possible for peraluminous leucogranites as for most other crustal (S-, I- and A-type) peraluminous and metaluminous granites. This stresses the critical importance of the mantle for granite generation and opens the way for unification of granite generation processes.</p

    Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift

    Get PDF
    International audienceContinental rift systems form by propagation of isolated rift segments that interact, and eventually evolve into continuous zones of deformation. This process impacts many aspects of rifting including rift morphology at breakup, and eventual ocean-ridge segmentation. Yet, rift segment growth and interaction remain enigmatic. Here we present geological data from the poorly documented Ririba rift (South Ethiopia) that reveals how two major sectors of the East African rift, the Kenyan and Ethiopian rifts, interact. We show that the Ririba rift formed from the southward propagation of the Ethiopian rift during the Pliocene but this propagation was short-lived and aborted close to the Pliocene-Pleistocene boundary. Seismicity data support the abandonment of laterally offset, overlapping tips of the Ethiopian and Kenyan rifts. Integration with new numerical models indicates that rift abandonment resulted from progressive focusing of the tectonic and magmatic activity into an oblique, throughgoing rift zone of near pure extension directly connecting the rift sectors

    C–O–H–S fluids and granitic magma : how S partitions and modifies CO2 concentrations of fluid-saturated felsic melt at 200 MPa

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 162 (2011): 849-865, doi:10.1007/s00410-011-0628-1.Hydrothermal volatile-solubility and partitioning experiments were conducted with fluid-saturated haplogranitic melt, H2O, CO2, and S in an internally heated pressure vessel at 900°C and 200 MPa; three additional experiments were conducted with iron-bearing melt. The run-product glasses were analyzed by electron microprobe, FTIR, and SIMS; and they contain ≤ 0.12 wt% S, ≤ 0.097 wt.% CO2, and ≤ 6.4 wt.% H2O. Apparent values of log ƒO2 for the experiments at run conditions were computed from the [(S6+)/(S6++S2-)] ratio of the glasses, and they range from NNO-0.4 to NNO+1.4. The C-O-H-S fluid compositions at run conditions were computed by mass balance, and they contained 22-99 mol% H2O, 0-78 mol% CO2, 0-12 mol% S, and < 3 wt% alkalis. Eight S-free experiments were conducted to determine the H2O and CO2 concentrations of melt and fluid compositions and to compare them with prior experimental results for C-O-H fluid-saturated rhyolite melt, and the agreement is excellent. Sulfur partitions very strongly in favor of fluid in all experiments, and the presence of S modifies the fluid compositions, and hence, the CO2 solubilities in coexisting felsic melt. The square of the mole fraction of H2O in melt increases in a linear fashion, from 0.05-0.25, with the H2O concentration of the fluid. The mole fraction of CO2 in melt increases linearly, from 0.0003-0.0045, with the CO2 concentration of C-O-H-S fluids. Interestingly, the CO2 concentration in melts, involving relatively reduced runs (log ƒO2 ≤ NNO+0.3) that contain 2.5-7 mol% S in the fluid, decreases significantly with increasing S in the system. This response to the changing fluid composition causes the H2O and CO2 solubility curve for C-O-H-S fluid-saturated haplogranitic melts at 200 MPa to shift to values near that modeled for C-O-H fluid-saturated, S-free rhyolite melt at 150 MPa. The concentration of S in haplogranitic melt increases in a linear fashion with increasing S in C-O-H-S fluids, but these data show significant dispersion that likely reflects the strong influence of ƒO2 on S speciation in melt and fluid. Importantly, the partitioning of S between fluid and melt does not vary with the (H2O/H2O+CO2) ratio of the fluid. The fluid-melt partition coefficients for H2O, CO2, and S and the atomic (C/S) ratios of the run-product fluids are virtually identical to thermodynamic constraints on volatile partitioning and the H, S, and C contents of pre-eruptive magmatic fluids and volcanic gases for subduction-related magmatic systems thus confirming our experiments are relevant to natural eruptive systems.This research was supported in part by National Science Foundation awards EAR 0308866 and EAR-0836741 to J.D.W
    • …
    corecore