17 research outputs found

    Apathy Associated With Impaired Recognition of Happy Facial Expressions in Huntington's Disease.

    Get PDF
    OBJECTIVES: Previous research has demonstrated an association between emotion recognition and apathy in several neurological conditions involving fronto-striatal pathology, including Parkinson's disease and brain injury. In line with these findings, we aimed to determine whether apathetic participants with early Huntington's disease (HD) were more impaired on an emotion recognition task compared to non-apathetic participants and healthy controls. METHODS: We included 43 participants from the TRACK-HD study who reported apathy on the Problem Behaviours Assessment - short version (PBA-S), 67 participants who reported no apathy, and 107 controls matched for age, sex, and level of education. During their baseline TRACK-HD visit, participants completed a battery of cognitive and psychological tests including an emotion recognition task, the Hospital Depression and Anxiety Scale (HADS) and were assessed on the PBA-S. RESULTS: Compared to the non-apathetic group and the control group, the apathetic group were impaired on the recognition of happy facial expressions, after controlling for depression symptomology on the HADS and general disease progression (Unified Huntington's Disease Rating Scale total motor score). This was despite no difference between the apathetic and non-apathetic group on overall cognitive functioning assessed by a cognitive composite score. CONCLUSIONS: Impairment of the recognition of happy expressions may be part of the clinical picture of apathy in HD. While shared reliance on frontostriatal pathways may broadly explain associations between emotion recognition and apathy found across several patient groups, further work is needed to determine what relationships exist between recognition of specific emotions, distinct subtypes of apathy and underlying neuropathology. (JINS, 2019, 25, 453-461)

    Apathy and atrophy of subcortical brain structures in Huntington's disease: A two-year follow-up study

    Get PDF
    Background: Huntington's disease (HD) is characterized by motor and behavioral symptoms, and cognitive decline. HD gene carriers and their caregivers report the behavioral and cognitive symptoms as the most burdensome. Apathy is the most common behavioral symptom of HD and is related to clinical measures of disease progression, like functional capacity. However, it is unknown whether apathy is directly related to the neurodegenerative processes in HD. Objective: The aim is to investigate whether an association between atrophy of subcortical structures and apathy is present in HD, at baseline and after 2 years follow-up. Method: Volumes of 7 subcortical structures were measured using structural T1 MRI in 171 HD gene carriers of the TRACK-HD study and apathy was assessed with the Problem Behaviors Assessment-Short, at baseline and follow-up visit. At baseline, logistic regression was used to evaluate whether volumes of subcortical brain structures were associated with the presence of apathy. Linear regression was used to assess whether subcortical atrophy was associated with the degree of apathy at baseline and with an increase in severity of apathy over time. Results: At baseline, smaller volume of the thalamus showed a higher probability of the presence of apathy in HD gene carriers, but none of the subcortical structures was associated with the degree of apathy. Over time, no association between atrophy of any subcortical structures and change in degree of apathy was found. Conclusion: The presence of apathy is associated with atrophy of the thalamus in HD, suggesting that apathy has an underlying neural cause and might explain the high incidence of apathy in HD. However, no association was found between atrophy of these subcortical structures and increase in severity of apathy over a 2-year time period. Keywords: Apathy, Huntington's disease, Subcortical structures, Thalamu

    The impact of occipital lobe cortical thickness on cognitive task performance : An investigation in Huntington's Disease

    Get PDF
    Background: The occipital lobe is an important visual processing region of the brain. Following consistent findings of early neural changes in the occipital lobe in Huntington's Disease (HD), we examined cortical thickness across four occipital regions in premanifest (preHD) and early HD groups compared with controls. Associations between cortical thickness in gene positive individuals and performance on six cognitive tasks, each with a visual component, were examined. In addition, the association between cortical thickness in gene positive participants and one non-visual motor task was also examined for comparison. Methods: Cortical thickness was determined using FreeSurfer on T1-weighted 3T MR datasets from controls (N=97), preHD (N=109) and HD (N=69) from the TRACK-HD study. Regression models were fitted to assess between-group differences in cortical thickness, and relationships between performance on the cognitive tasks, the motor task and occipital thickness were examined in a subset of gene-positive participants (N=141). Results: Thickness of the occipital cortex in preHD and early HD participants was reduced compared with controls. Regionally-specific associations between reduced cortical thickness and poorer performance were found for five of the six cognitive tasks, with the strongest associations in lateral occipital and lingual regions. No associations were found with the cuneus. The non-visual motor task was not associated with thickness of any region. Conclusions: The heterogeneous pattern of associations found in the present study suggests that occipital thickness negatively impacts cognition, but only in regions that are linked to relatively advanced visual processing (e.g., lateral occipital, lingual regions), rather than in basic visual processing regions such as the cuneus. Our results show, for the first time, the functional implications of occipital atrophy highlighted in recent studies in HD

    Early atrophy of pallidum and accumbens nucleus in Huntington's disease

    Get PDF
    In Huntington's disease (HD) atrophy of the caudate nucleus and putamen has been described many years before clinical manifestation. Volume changes of the pallidum, thalamus, brainstem, accumbens nucleus, hippocampus, and amygdala are less well investigated, or reported with contradicting results. The aim of our study is to provide a more precise view of the specific atrophy of the subcortical grey matter structures in different stages of Huntington's disease, and secondly to investigate how this influences the clinical manifestations. All TRACK-HD subjects underwent standardised T1-weighted 3T MRI scans encompassing 123 manifest HD (stage 1, n = 77; stage 2, n = 46), 120 premanifest HD (close to onset n = 58, far from onset n = 62) and 123 controls. Using FMRIB's FIRST and SIENAX tools the accumbens nucleus, amygdala, brainstem, caudate nucleus, hippocampus, pallidum, putamen, thalamus and whole brain volume were extracted. Results showed that volumes of the caudate nucleus and putamen were reduced in premanifest HD far from predicted onset (> 10.8 years). Atrophy of accumbens nucleus and pallidum was apparent in premanifest HD in the close to onset group (0-10.8 years). All other structures were affected to some degree in the manifest group, although brainstem, thalamus and amygdala were relatively spared. The accumbens nucleus, putamen, pallidum and hippocampus had a strong significant correlation with functional and motor scores. We conclude that volume changes may be a sensitive and reliable measure for early disease detection and in this way serve as a biomarker for Huntington's disease. Besides the caudate nucleus and putamen, the pallidum and the accumbens nucleus show great potential in this respect.Neurological Motor Disorder
    corecore