92 research outputs found

    Quantitative Assessment of Carrier Density by Cathodoluminescence (2): GaAs nanowires

    Full text link
    Precise control of doping in single nanowires (NWs) is essential for the development of NW-based devices. Here, we investigate a series of MBE-grown GaAs NWs with Be (p-type) and Si (n-type) doping using high-resolution cathodoluminescence (CL) mapping at low- and room-temperature. CL spectra are analyzed selectively in different regions of the NWs. Room-temperature luminescence is fitted with the generalized Planck's law and an absorption model, and the bandgap and band tail width are extracted. For Be-doped GaAs NWs, the bandgap narrowing provides a quantitative determination of the hole concentration ranging from about 1×10181\times 10^{18} to 2×10192\times 10^{19} cm3^{-3}, in good agreement with the targeted doping levels. For Si-doped GaAs NWs, the electron Fermi level and the full-width at half maximum of low-temperature CL spectra are used to assess the electron concentration to approximately 3×10173\times 10^{17} to 6×10176\times 10^{17} cm3^{-3}. These findings confirm the difficulty to reach highly-doped n-type GaAs NWs, may be due to doping compensation. Notably, signatures of high concentration (5-9×1018\times 10^{18} cm3^{-3}) at the very top of NWs are unveiled

    Quantitative Assessment of Carrier Density by Cathodoluminescence (1): GaAs thin films and modeling

    Full text link
    Doping is a fundamental property of semiconductors and constitutes the basis of modern microelectronic and optoelectronic devices. Their miniaturization requires contactless characterization of doping with nanometer scale resolution. Here, we use low- and room-temperature cathodoluminescence (CL) measurements to analyze p-type and n-type GaAs thin films over a wide range of carrier densities (2×10172\times 10^{17} to 1×10191\times 10^{19} cm3^{-3}). The spectral shift and broadening of CL spectra induced by shallow dopant states and band filling are the signature doping. We fit the whole spectral lineshapes with the generalized Planck's law and refined absorption models to extract the bandgap narrowing (BGN) and the band tail for both doping types, and the electron Fermi level for n doping. This work provides a rigorous method for the quantitative assessment of p-type and n-type carrier density using CL. Taking advantage of the high spatial resolution of CL, it can be used to map the doping in GaAs nanostructures, and it could be extended to other semiconductor materials.Comment: Supplemental Materia

    Soil, site, and management factors affecting cadmium concentration in cacao-growing soils

    Get PDF
    Soil contamination by potentially toxic trace elements (PTEs) such as Cadmium (Cd), is a major environmental concern because of its potential implications to human health. Cacao-based products have been identified as food sources with relatively high Cd contents. Here, we assessed Cd concentrations of cacao-growing soils in four major agricultural regions with contrasting climates in Peru, one of the main exporters of cacao products worldwide. At each study site (n = 40) a broad range of potential factors affecting Cd concentration in soils, i.e., site, soil and management, were evaluated. Concentrations of Cd ranged between 1.1-3.2 mg kg-1. Mean values per region were below 2.7 mg kg-1, usually established as upper-limit for non-polluted soils. Cadmium concentrations were significantly (p < 0.001) higher in sites at higher elevations and in a temperate, drier climate. Cadmium correlated positively with pH (r = 0.57; p < 0.05) and was higher (p < 0.001) in alluvial sediments and Leptosols. Management factors (cacao variety, cultivation year, management practices) and agroecology did not affect Cd concentrations directly. Overall, this study highlights the importance of considering a broad range of both natural and anthropogenic factors to evaluate Cd concentrations in cacao-growing soils and contribute to effective and sustainable cacao production by improving land management and plannin

    Solution-Processed Polymer Dielectric Interlayer for Low-Voltage, Unipolar n-Type Organic Field-Effect Transistors

    Get PDF
    The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization. This process is widely applicable to a variety of semiconducting and dielectric materials. We achieved this through the use of a photo-cross-linked, low-k dielectric interlayer, which is used to fabricate multilayer dielectric stacks with areal capacitances of up to 40 nF/cm2 and leakage currents below 1 nA/cm2. Because of the chosen azide-based cross-linker, the dielectric promotes n-type unipolarization of the transistors and demonstrated to be compatible with different classes of semiconductors, from conjugated polymers to carbon nanotubes and low-temperature metal oxides. Our results demonstrate a general applicability of our unipolarizing dielectric, facilitating the implementation of complementary circuitry of emerging technologies with reduced power consumption.</p

    Enhancing intermediate band solar cell performances through quantum engineering of dot states by droplet epitaxy

    Get PDF
    We report the effect of the quantum dot aspect ratio on the sub-gap absorption properties of GaAs/AlGaAs quantum dot intermediate band solar cells. We have grown AlGaAs solar cells containing GaAs quantum dots made by droplet epitaxy. This technique allows the realization of strain-free nanostructures with lattice matched materials, enabling the possibility to tune the size, shape, and aspect ratio to engineer the optical and electrical properties of devices. Intermediate band solar cells have been grown with different dot aspect ratio, thus tuning the energy levels of the intermediate band. Here, we show how it is possible to tune the sub-gap absorption spectrum and the extraction of charge carriers from the intermediate band states by simply changing the aspect ratio of the dots. The tradeoff between thermal and optical extraction is in fact fundamental for the correct functioning of the intermediate band solar cells. The combination of the two effects makes the photonic extraction mechanism from the quantum dots increasingly dominant at room temperature, allowing for a reduction of the open circuit voltage of only 14 mV, compared to the reference cell.publishedVersionPeer reviewe

    GaAs epilayers grown on patterned (001) silicon substrates via suspended Ge layers

    Get PDF
    We demonstrate the growth of low density anti-phase boundaries, crack-free GaAs epilayers, by Molecular Beam Epitaxy on silicon (001) substrates. The method relies on the deposition of thick GaAs on a suspended Ge buffer realized on top of deeply patterned Si substrates by means of a three-temperature procedure for the growth. This approach allows to suppress, at the same time, both threading dislocations and thermal strain in the epilayer and to remove anti-phase boundaries even in absence of substrate tilt. Photoluminescence measurements show the good uniformity and the high optical quality of AlGaAs/GaAs quantum well structures realized on top of such GaAs layer

    Design and testing of a roto-translational shutter mechanism for planetary operation

    No full text
    This work describes the design and testing of a shutter mechanism for a miniaturized infrared spectrometer developed for the ESA ExoMars Pasteur mission. Unlike most usual cover mechanisms, the conceived one provides a roto-translational motion. This feature allows the sealing of the interferometer main entrance window from dust contamination, in addition to the usual function of shuttering the instrument field of view. Although this characteristic is strongly desired because it avoids dust deposition and optics contamination while the instrument is not operating, it makes the mechanism design significantly more complex. Moreover, challenging design constraints were faced: the mass budget allowed for no more than 30 g allocation, the expected working thermal range extended down to -80 C and high vibration levels with an acceleration peak of 670 m/s2 were predicted during Mars landing. To complete the picture, the mechanism cover was required to provide also a calibration target for the 2-25 μm spectral range of the spectrometer. The resulting system is made by a calibrating/shutter cover moved by a purposely designed out of plane cams system which provides the desired motion. A mechanism mockup was assembled and successfully tested in the predicted thermal and mechanical environments

    BB Test Report (CAM – Evaluation of an In-Situ Molecular Contamination Sensor for Space Use (ITT-ESA))

    No full text
    The reports described the test performed on the CAM breadboard (software, harness, thermal, stability, functionality, performance

    Formation of stable Si–O–C submonolayers on hydrogen-terminated silicon(111) under low-temperature conditions

    No full text
    In this letter, we report results of a hydrosilylation carried out on bifunctional molecules by using two different approaches, namely through thermal treatment and photochemical treatment through UV irradiation. Previously, our group also demonstrated that in a mixed alkyne/alcohol solution, surface coupling is biased towards the formation of Si–O–C linkages instead of Si–C linkages, thus indirectly supporting the kinetic model of hydrogen abstraction from the Si–H surface (Khung, Y. L. et al. Chem. – Eur. J. 2014, 20, 15151–15158). To further examine the probability of this kinetic model we compare the results from reactions with bifunctional alkynes carried out under thermal treatment (<130 °C) and under UV irradiation, respectively. X-ray photoelectron spectroscopy and contact angle measurements showed that under thermal conditions, the Si–H surface predominately reacts to form Si–O–C bonds from ethynylbenzyl alcohol solution while the UV photochemical route ensures that the alcohol-based alkyne may also form Si–C bonds, thus producing a monolayer of mixed linkages. The results suggested the importance of surface radicals as well as the type of terminal group as being essential towards directing the nature of surface linkage
    corecore