651 research outputs found

    Optical transparency modes in anisotropic media

    Full text link
    The modes of nonlinear propagation of the two-component electromagnetic pulses through optically uniaxial media containing resonant particles are studied. The features of their manifestation in the "dense" media and in the media with expressed positive and negative birefringences are discussed. It is shown that exponentially and rationally decreasing solutions of the system of material and wave equations allow us also to describe the propagation of the self-induced transparency pulses in isotropic media in the case, when the direct electric dipole-dipole interaction between the resonant particles is taken into account.Comment: LaTeX, 11 pages, 4 figures, International Conference on Coherent and Nonlinear Optics (ICONO 2005

    Collective processes in relativistic plasma and their implications for gamma-ray burst afterglows

    Get PDF
    We consider the effects of collective plasma processes on synchrotron emission from highly relativistic electrons. We find, in agreement with Sazonov (1970), that strong effects are possible also in the absence of a non-relativistic plasma component, due to the relativistic electrons (and protons) themselves. In contrast with Sazonov, who infers strong effects only in cases where the ratio of plasma frequency to cyclotron frequency is much larger than the square of the characteristic electron Lorentz factor, nu_p/nu_B >> gamma^2, we find strong effects also for 1 << nu_p/nu_B << gamma^2. The modification of the spectrum is prominent at frequencies nu < nu_{R*} = nu_p min[gamma, (nu_p/nu_B)^(1/2)], where nu_{R*} generalizes the Razin-Tsytovich frequency, nu_R = gamma nu_p, to the regime nu_p/nu_B << gamma^2. Applying our results to gamma-ray burst (GRB) plasmas, we predict a strong modification of the radio spectrum on minute time scale following the GRB, at the onset of fireball interaction with its surrounding medium, in cases where the ratio of the energy carried by the relativistic electrons to the energy carried by the magnetic field exceeds ~ 10^5. Plausible electron distribution functions may lead to negative synchrotron reabsorption, i.e to coherent radio emission, which is characterized by a low degree of circular polarization. Detection of these effects would constrain the fraction of energy in the magnetic field, which is currently poorly determined by observations, and, moreover, would provide a novel handle on the properties of the environment into which the fireball expands.Comment: 28 pages, 1 figure, submitted to Ap

    The V-mode polarization of the Cosmic Microwave Background

    Get PDF
    The V-mode polarization of the Cosmic Microwave Background is discussed in a weakly magnetized plasma. The VV and VT angular power spectra are computed for adiabatic initial conditions of the Einstein-Boltzmann hierarchy. Depending upon the frequency channel and upon the magnetic field intensity, the VT power spectra of the circular polarization can even be seven orders of magnitude larger than a putative B-mode polarization stemming from the lensing of the primary anisotropies. Specific programs aimed at the direct detection of the V-mode polarization of the Cosmic Microwave Background could provide a new observational tool for the scrutiny of pre-decoupling physics.Comment: 9 pages, 4 included figures; minor corrections to match the published versio

    New Kinds of Acoustic Solitons

    Full text link
    We find that the modified sine-Gordon equation belonging to the class of the soliton equations describes the propagation of extremely short transverse acoustic pulses through the low-temperature crystal containing paramagnetic impurities with effective spin S=1/2 in the Voigt geometry case. The features of nonlinear dynamics of strain field and effective spins, which correspond to the different kinds of acoustic solitons, are studied.Comment: 9 pages, 1 figur

    A hard X-ray survey of the Crux Galactic spiral arm tangent. A catalog of sources

    Full text link
    This work is part of a large solid angle hard X-ray survey. We analized a number of observations by the IBIS telescope aboard the INTEGRAL observatory covering the Crux Galactic spiral arm tangent. We have detected 46 hard X-ray sources, with 15 of them being new. Among the identified sources there are 12 AGNs, 11 HMXBs, 6 LMXBs and 2 active stars. 13 sources remain unidendified.Comment: Accepted for publication in Astronomy Letter

    Luminosity Function of High-Mass X-ray Binaries and Anisotropy in the Distribution of Active Galactic Nuclei toward the Large Magellanic Cloud

    Full text link
    In 2003-2012, the INTEGRAL observatory has performed long-term observations of the Large Magellanic Cloud (LMC). At present, this is one of the deepest hard X-ray (20-60 keV) surveys of extragalactic fields in which more than 20 sources of different natures have been detected. We present the results of a statistical analysis of the population of high-mass X-ray binaries in the LMC and active galactic nuclei (AGNs) observed in its direction. The hard X-ray luminosity function of high-mass X-ray binaries is shown to be described by a power law with a slope alpha~1.8, that in agreement with the luminosity function measurements both in the LMC itself, but made in the soft X-ray energy band, and in other galaxies. At the same time, the number of detected AGNs toward the LMC turns out to be considerably smaller than the number of AGNs registered in other directions, in particular, toward the source 3C 273. The latter confirms the previously made assumption that the distribution of matter in the local Universe is nonuniform.Comment: 5 pages, 5 figures, will be published in Astronomy Letters, 2012, Vol. 38, No. 8, p. 492--49

    Low temperature magnetic structure of CeRhIn5_5 by neutron diffraction on absorption-optimized samples

    Full text link
    Two aspects of the ambient pressure magnetic structure of heavy fermion material CeRhIn5_5 have remained under some debate since its discovery: whether the structure is indeed an incommensurate helix or a spin density wave, and what is the precise magnitude of the ordered magnetic moment. By using a single crystal sample optimized for hot neutrons to minimize neutron absorption by Rh and In, here we report an ordered moment of m=0.54(2) μBm=0.54(2)~\mu_B. In addition, by using spherical neutron polarimetry measurements on a similar single crystal sample, we have confirmed the helical nature of the magnetic structure, and identified a single chiral domain

    Several New Active Galactic Nuclei Among X-ray Sources Detected by INTEGRAL and SWIFT Observatories

    Get PDF
    We present the results of the optical identifications of a set of X-ray sources from the all-sky surveys of INTEGRAL and SWIFT observatories. Optical data were obtained with Russian-Turkish 1.5-m Telescope (RTT150). Nine X-ray sources were identified as active galactic nuclei (AGNs). Two of them are hosted by nearby, nearly exactly edge-on, spiral galaxies MCG -01-05-047 and NGC 973. One source, IGR J16562-3301, is most probably BL Lac object (blazar). Other AGNs are observed as stellar-like nuclei of spiral galaxies, with broad emission lines in their spectra. For the majority of our hard X-ray selected AGNs, their hard X-ray luminosities are well-correlated with the luminosities in [OIII],5007 optical emission line. However, the luminosities of some AGNs deviate from this correlation. The fraction of these objects can be as high as 20%. In particular, the flux in [OIII] line turns to be lower in two nearby edge-on spiral galaxies, which can be explained by the extinction in their galactic disks.Comment: 9 pages, 3 figures, accepted for publication in Astronomy Letters, the original text in Russian can be found at http://hea.iki.rssi.ru/~rodion/poptid.pd
    • …
    corecore