6 research outputs found

    Novel Mouse Xenograft Models Reveal a Critical Role of CD4+ T Cells in the Proliferation of EBV-Infected T and NK Cells

    Get PDF
    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγnull strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases

    The Association between Glomerular Filtration Rate Estimated Using Different Equations and Mortality in the Japanese Community-Based Population: The Yamagata (Takahata) Study

    No full text
    Background. To evaluate renal function, the indices of estimated glomerular filtration rate (eGFR) obtained using several equations, including the Japanese versions of the serum creatinine-based MDRD equation (eGFRcreat), Chronic Kidney Disease Epidemiology Collaboration equation (eGFR-EPI), and serum cystatin C-based equation (eGFRcys), are utilized. This study prospectively examined the association between these eGFR values and all-cause mortality during a 12-year observational period in a community-based population. Methods and Results. The subjects of this study were 1312 participants undergoing a health checkup, aged ≥40 years. In the total population, the mean eGFR values (mL·min−1·1.73 m−2) were 81.5 for eGFRcreat, 78.1 for eGFR-EPI, and 76.6 for eGFRcys. There were 141 deaths during the observation period, and the area under the receiver operating characteristic curve for predicting mortality was 0.59 for eGFRcreat, 0.67 for eGFR-EPI, and 0.70 for eGFRcys (all P<0.01). In the Cox proportional analysis adjusted for age and sex, eGFRcys, but not eGFRcreat and eGFR-EPI, showed a significant association with all-cause mortality (per 15 mL·min−1·1.73 m−2 decrease: hazard ratio 1.40, 95% confidence interval 1.18–1.67). Conclusions. This study revealed that eGFRcys showed lower values than eGFRcreat and eGFR-EPI and was significantly associated with all-cause mortality in the Japanese community-based population
    corecore