34 research outputs found

    Peripheral neuropathy in HIV-infected and uninfected patients in Rakai, Uganda

    Get PDF
    OBJECTIVE: To determine the prevalence, risk factors, and functional impairment associated with peripheral neuropathy in a prospective cohort of adults in rural Uganda. METHODS: Eight hundred participants (400 HIV- and 400 antiretroviral-naive HIV+) in the Rakai Community Cohort Study underwent detailed neurologic evaluations including assessment of neuropathy symptoms, functional measures (Patient Assessment of Own Functioning Inventory and Karnofsky Performance Status scores), and neurologic evaluation by a trained medical officer. Neuropathy was defined as ≥1 subjective symptom and ≥1 sign of neuropathy on examination. Neuropathy risk factors were assessed using log binomial regression. RESULTS: Fifty-three percent of participants were men, with a mean (SD) age of 35 (8) years. Neuropathy was present in 13% of the cohort and was more common in HIV+ vs HIV- participants (19% vs 7%, p < 0.001). Older age (relative risk [RR] 1.04, 95% confidence interval [CI] 1.02-1.06), female sex (RR 1.49, 95% CI 1.04-2.15), HIV infection (RR 2.82, 95% CI 1.86-4.28), tobacco use (RR 1.59, 95% CI 1.02-2.48), and prior neurotoxic medication use (RR 2.08, 95% CI 1.07-4.05) were significant predictors of neuropathy in the overall cohort. Only older age was associated with neuropathy risk in the HIV+ (RR 1.03, 95% CI 1.01-1.05) and HIV- (RR 1.06, 95% CI 1.02-1.10) cohorts. Neuropathy was associated with impaired functional status on multiple measures across all participant groups. CONCLUSIONS: Peripheral neuropathy is relatively common and associated with impaired functional status among adults in rural Uganda. Older age, female sex, and HIV infection significantly increase the risk of neuropathy. Neuropathy may be an underrecognized but important condition in rural Uganda and warrants further study

    National plans and awareness campaigns as priorities for achieving global brain health

    Get PDF
    Neurological conditions are the leading cause of death and disability combined. This public health crisis has become a global priority with the introduction of WHO's Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022–2031 (IGAP). 18 months after this plan was adopted, global neurology stakeholders, including representatives of the OneNeurology Partnership (a consortium uniting global neurology organisations), take stock and advocate for urgent acceleration of IGAP implementation. Drawing on lessons from relevant global health contexts, this Health Policy identifies two priority IGAP targets to expedite national delivery of the entire 10-year plan: namely, to update national policies and plans, and to create awareness campaigns and advocacy programmes for neurological conditions and brain health. To ensure rapid attainment of the identified priority targets, six strategic drivers are proposed: universal community awareness, integrated neurology approaches, intersectoral governance, regionally coordinated IGAP domestication, lived experience-informed policy making, and neurological mainstreaming (advocating to embed brain health into broader policy agendas). Contextualised with globally emerging IGAP-directed efforts and key considerations for intersectoral policy design, this novel framework provides actionable recommendations for policy makers and IGAP implementation partners. Timely, synergistic pursuit of the six drivers might aid WHO member states in cultivating public awareness and policy structures required for successful intersectoral roll-out of IGAP by 2031, paving the way towards brain health for all.</p

    The Neutron star Interior Composition Explorer (NICER): design and development

    Get PDF

    Angiotensin II Receptor Subtypes in the Rat Brain

    No full text
    The non-peptide angiotensin II (AII) receptor subtype selective antagonist, DuP 753, was used to characterize AII receptor binding sites in the rat brain. DuP 753 competed for specific 125I-[Sar1, Ile8]AII (125I-SIAII) binding in many brain nuclei (IC50 = 20-30 nM), but was a weak competitor at remaining sites (IC50 \u3e 10-4 M). DuP 753 sensitive binding sites (designated AIIα subtype) correspond with areas where binding is inhibited by sulfhydryl reducing agents, whereas DuP 753 insensitive sites (AIIβ) correspond with areas where binding is not inhibited by sulfhydryl reducing agents

    Discrimination of Angiotensin II Receptor Subtype Distribution in the Rat Brain Using Non-Peptidic Receptor Antagonists

    No full text
    The non-peptidic angiotensin II receptor subtype selective antagonists, DuP 753 and PD123177, were used to characterize angiotensin II receptor binding sites in the rat brain. Competitive receptor autoradiography with 125I-Sar1-Ile8 angiotensin II defined a regional distribution of binding sites that were sensitive to either DuP 753 (designated AIIα subtype) or PD123177 (designated AIIβ subtype). Whereas most brain nuclei could be assigned to a category containing a predominant subtype, a multiple receptor subtype analysis indicated that some regions are homogeneous, while others contain a mixture of both AIIα and AIIβ subtypes

    Sulfhydryl Reducing Agents Distinguish Two Subtypes of Angiotensin II Receptors in the Rat Brain

    No full text
    Two angiotensin II receptor subtypes were distinguished in the rat brain using in vitro receptor autoradiography based on the differential effects of sulfhydryl reducing agents on 125I-sarcosine1, isoleucine8 angiotensin II binding in various brain nuclei. At several nuclei, e.g. the hypothalamus, circumventricular organs and the dorsal medulla, 125I-sarcosine1, isoleucine8 angiotensin II binding was strongly inhibited by 30 mM β-mercaptoethanol or 5 mM dithiothreitol, whereas at other nuclei, e.g. the lateral septum, colliculi, locus coeruleus and medial amygdala, sulfhydryl reducing agents had either little effect on radioligand binding or enhanced the binding. The distribution of the sulfhydryl reducing agent inactivated subtype corresponds exactly with the distribution of DuP 753 sensitive (designated as AIIα) 125I-sarcosine1, isoleucine8 angiotensin II binding sites25. The subtype not inhibited by sulfhydryl reducing agents corresponds with the DuP 753 insensitive (designated as AIIβ) sites in the brain25. The sulfhydryl reducing agent effect on brain angiotensin II receptor subtypes is similar to that seen in angiotensin II receptor subtypes in peripheral tissues. These observations indicate that many previous studies of brain angiotensin II receptor binding that included 5 mM dithiothreitol in the assay medium overlooked the sulfhydryl reducing agent inactivated (AIIα) receptor subtype

    Max Kade Institute Friends Newsletter, Vol. 13, no. 4, Winter 2004

    No full text
    Quarterly Newsletter of the Max Kade Institute for German-American Studies, University of Wisconsin-MadisonContents: "Conference Explores Tales of Immigration" --- "Directors' Corner: MKI Resources Attracting Researchers" --- "Friend's Profile: Family Letters Inspired Ritsche to Write Novel" --- "Speaking of Language: Elias Molee and the Dream of an International Language" --- "Milwaukee's German-American Taverns in the 1940s" --- "Luxembourg-American Cultural Center in Ozaukee County" --- Collection Feature: Sehen Sie Amerika! Photographic Portfolios in German" --- "Book Review: Finding a German-American Family's Treasure in Milwaukee. A Mystery Novel for Children" --- "German-American Symposium in Bielefeld.
    corecore