10 research outputs found

    Phase-Change Microcapsules with a Stable Polyurethane Shell through the Direct Crosslinking of Cellulose Nanocrystals with Polyisocyanate at the Oil/Water Interface of Pickering Emulsion

    Get PDF
    Phase-change materials (PCMs) attract much attention with regard to their capability of mitigating fossil fuel-based heating in in-building applications, due to the responsive accumulation and release of thermal energy as a latent heat of reversible phase transitions. Organic PCMs possess high latent heat storage capacity and thermal reliability. However, bare PCMs suffer from leakages in the liquid form. Here, we demonstrate a reliable approach to improve the shape stability of organic PCM n-octadecane by encapsulation via interfacial polymerization at an oil/water interface of Pickering emulsion. Cellulose nanocrystals are employed as emulsion stabilizers and branched oligo-polyol with high functionality to crosslink the polyurethane shell in reaction with polyisocyanate dissolved in the oil core. This gives rise to a rigid polyurethane structure with a high density of urethane groups. The formation of a polyurethane shell and successful encapsulation of n-octadecane is confirmed by FTIR spectroscopy, XRD analysis, and fluorescent confocal microscopy. Electron microscopy reveals the formation of non-aggregated capsules with an average size of 18.6 µm and a smooth uniform shell with the thickness of 450 nm. The capsules demonstrate a latent heat storage capacity of 79 J/g, while the encapsulation of n-octadecane greatly improves its shape and thermal stability compared with bulk paraffin

    Antibiotic Susceptibility Testing with Raman Biosensing

    No full text
    Antibiotics guard us against bacterial infections and are among the most commonly used medicines. The immediate consequence of their large-scale production and prescription is the development of antibiotic resistance. Therefore, rapid detection of antibiotic susceptibility is required for efficient antimicrobial therapy. One of the promising methods for rapid antibiotic susceptibility testing is Raman spectroscopy. Raman spectroscopy combines fast and contactless acquisition of spectra with good selectivity towards bacterial cells. The antibiotic-induced changes in bacterial cell physiology are detected as distinct features in Raman spectra and can be associated with antibiotic susceptibility. Therefore, the Raman-based approach may be beneficial in designing therapy against multidrug-resistant infections. The surface-enhanced Raman spectroscopy (SERS) and resonance Raman spectroscopy (RRS) additionally provide excellent sensitivity. In this review, we present an analysis of the Raman spectroscopy–based optical biosensing approaches aimed at antibiotic susceptibility testing

    Structure and Properties of Cellulose/Mycelium Biocomposites

    No full text
    The current environmental problems require the use of low-energy, environmentally friendly methods and nature-like technologies for the creation of materials. In this work, we aim to study the possibility of the direct biotransformation of fibrillar cellulose by fungi through obtaining a cellulose/mycelium-based biocomposite. The cellulose micro- and nanofibrils were used as the main carbon sources in the solid-phase cultivation of basidiomycete Trametes hirsuta. The cellulose fibrils in this process act as a template for growing mycelium with the formation of well-developed net structure. The biotransformation dynamics of cellulose fibrils were studied with the help of scanning electron microscopy. The appearance of nitrogen in the structure of formed fibers was revealed by elemental analysis and FTIR-spectroscopy. The fibers diameters were estimated based on micrograph analysis and the laser diffraction method. It was shown that the diameter of cellulose fibrils can be tuned by fungi through obtaining cellulose-based mycelium fibers with a narrower diameter-size distribution as compared to the pristine cellulose fibrils. The morphology of the resulting mycelium differed when the micro or nanofibrils were used as a substrate

    Structure and Properties of Cellulose/Mycelium Biocomposites

    No full text
    The current environmental problems require the use of low-energy, environmentally friendly methods and nature-like technologies for the creation of materials. In this work, we aim to study the possibility of the direct biotransformation of fibrillar cellulose by fungi through obtaining a cellulose/mycelium-based biocomposite. The cellulose micro- and nanofibrils were used as the main carbon sources in the solid-phase cultivation of basidiomycete Trametes hirsuta. The cellulose fibrils in this process act as a template for growing mycelium with the formation of well-developed net structure. The biotransformation dynamics of cellulose fibrils were studied with the help of scanning electron microscopy. The appearance of nitrogen in the structure of formed fibers was revealed by elemental analysis and FTIR-spectroscopy. The fibers diameters were estimated based on micrograph analysis and the laser diffraction method. It was shown that the diameter of cellulose fibrils can be tuned by fungi through obtaining cellulose-based mycelium fibers with a narrower diameter-size distribution as compared to the pristine cellulose fibrils. The morphology of the resulting mycelium differed when the micro or nanofibrils were used as a substrate

    Phase-Change Microcapsules with a Stable Polyurethane Shell through the Direct Crosslinking of Cellulose Nanocrystals with Polyisocyanate at the Oil/Water Interface of Pickering Emulsion

    Get PDF
    Phase-change materials (PCMs) attract much attention with regard to their capability of mitigating fossil fuel-based heating in in-building applications, due to the responsive accumulation and release of thermal energy as a latent heat of reversible phase transitions. Organic PCMs possess high latent heat storage capacity and thermal reliability. However, bare PCMs suffer from leakages in the liquid form. Here, we demonstrate a reliable approach to improve the shape stability of organic PCM n-octadecane by encapsulation via interfacial polymerization at an oil/water interface of Pickering emulsion. Cellulose nanocrystals are employed as emulsion stabilizers and branched oligo-polyol with high functionality to crosslink the polyurethane shell in reaction with polyisocyanate dissolved in the oil core. This gives rise to a rigid polyurethane structure with a high density of urethane groups. The formation of a polyurethane shell and successful encapsulation of n-octadecane is confirmed by FTIR spectroscopy, XRD analysis, and fluorescent confocal microscopy. Electron microscopy reveals the formation of non-aggregated capsules with an average size of 18.6 µm and a smooth uniform shell with the thickness of 450 nm. The capsules demonstrate a latent heat storage capacity of 79 J/g, while the encapsulation of n-octadecane greatly improves its shape and thermal stability compared with bulk paraffin

    Composite Bone Cements with Enhanced Drug Elution

    No full text
    Antibiotic-loaded bone cement (ALBC) has become an indispensable material in orthopedic surgery in recent decades, owing to the possibility of drugs delivery to the surgical site. It is applied for both infection prophylaxis (e.g., in primary joint arthroplasty) and infection treatment (e.g., in periprosthetic infection). However, the introduction of antibiotic to the polymer matrix diminishes the mechanical strength of the latter. Moreover, the majority of the loaded antibiotic remains embedded in polymer and does not participate in drug elution. Incorporation of the various additives to ALBC can help to overcome these issues. In this paper, four different natural micro/nanoscale materials (halloysite, nanocrystalline cellulose, micro- and nanofibrillated cellulose) were tested as additives to commercial Simplex P bone cement preloaded with vancomycin. The influence of all four materials on the polymerization process was comprehensively studied, including the investigation of the maximum temperature of polymerization, setting time, and monomer leaching. The introduction of the natural additives led to a considerable enhancement of drug elution and microhardness in the composite bone cements compared to ALBC. The best combination of the polymerization rate, monomer leaching, antibiotic release, and microhardness was observed for the sample containing nanofibrillated cellulose (NFC)

    Natural Fibrous Materials Based on Fungal Mycelium Hyphae as Porous Supports for Shape-Stable Phase-Change Composites

    No full text
    Adsorption of organic phase-change materials (PCMs) by the porous matrix of microfibrillar cellulose (MFC) is a simple and versatile way to prepare shape-stable phase-change composites, which are promising as sustainable thermoregulating additives to construction materials. However, due to MFC inherent morphology, the resulting composites have relatively low poured density that complicates their introduction in sufficient amounts, for instance, into mortar mixes. Unlike MFC, fungal mycelium has, by an order, less fibrils thickness and, thus, possesses significantly higher poured density. Herein, we studied the feasibility of fungal mycelium-based matrices as alternative biopolymeric porous supports for preparation of sustainable and shape-stable phase-change composites. Two methods were employed to prepare the porous mycelium-based supports. The first one was the solid-state fermentation, which resulted in partial biotransformation of MFCs to mycelium hyphae, while the second one was the liquid-state surface fermentation, used to cultivate the reference matrix of Trametes hirsuta hyphae. The phase-change composites were prepared by adsorption of model organic PCMs on porous biopolymer matrices. The mass ratio of support/PCM was 40/60 wt%. The composites were studied with respect to their structure, composition, poured density, latent heat storage properties, and thermal and shape stability. The employment of the partially transformed to mycelium-hyphae MFC fibers was found to be a suitable way to prepare phase-change composites with improved poured density while preserving a reasonable latent heat capacity and shape stability as compared to the MFC/PCM composites

    Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties

    No full text
    Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, <i>etc</i>. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance

    Antibacterial composites based on halloysite with silver nanoparticles and polyoxometalates

    No full text
    The spread of bacterial infections aggravated by the development of microbial resistance to antibiotics requires the creation of protective antibacterial materials. Nanomaterials with biocides can provide antibacterial and antibiofilm properties against Gram-positive and Gram-negative bacteria. In this work, we synthesized nanocomposites with silver nanoparticles and different polyoxometalates of Keggin-structure (phosphomolybdic, phosphotungstic, and tungstosilicic acids) on eco-friendly nanoclay called halloysite. We found that the nanocomposite containing silver nanoparticles and phosphomolybdic acid deposited on the halloysite possesses the best antibacterial performance of all the obtained composites, having a minimal inhibitory concentration of 0.5 g/L against S. aureus, 0.25 g/L against P. aeruginosa and A. baumannii. This composite reduces the viability of formed biofilms at a concentration of 2.5 g/L

    Natural Nanoclay-Based Silver-Phosphomolybdic Acid Composite with a Dual Antimicrobial Effect

    No full text
    [Image: see text] The problem of microbial growth on various surfaces has increased concern in society in the context of antibiotic misuse and the spreading of hospital infections. Thus, the development of new, antibiotic-free antibacterial strategies is required to combat bacteria resistant to usual antibiotic treatments. This work reports a new method for producing an antibiotic-free antibacterial halloysite-based nanocomposite with silver nanoparticles and phosphomolybdic acid as biocides, which can be used as components of smart antimicrobial coatings. The composite was characterized by using energy-dispersive X-ray fluorescence spectroscopy and transmission electron microscopy. The release of phosphomolybdic acid from the nanocomposite was studied by using UV–vis spectroscopy. It was shown that the antibiotic-free nanocomposite consisting of halloysite nanotubes decorated with silver nanoparticles loaded with phosphomolybdic acid and treated with calcium chloride possesses broad antibacterial properties, including the complete growth inhibition of Staphylococcus aureus and Pseudomonas aeruginosa bacteria at a 0.5 g × L(–1) concentration and Acinetobacter baumannii at a 0.25 g × L(–1) concentration
    corecore