5 research outputs found

    Associations between plasma branched chain amino acids and health biomarkers in response to resistance exercise training across age

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Leucine, isoleucine and valine (i.e., the branched chain amino acids, BCAA) play a key role in the support and regulation of tissue protein regulation and also as energy substrates. However, positive relationships exist between elevated levels of BCAA and insulin resistance (IR). Thus, we sought to investigate the links between fasting plasma BCAA following a progressive resistance exercise training (RET) programme, an intervention known to improve metabolic health. Fasting plasma BCAA were quantified in adults (young: 18–28 y, n = 8; middle-aged: 45–55 y, n = 9; older: 65–75 y, n = 15; BMI: 23–28 kg/m2, both males and females (~50:50), in a cross-sectional, intervention study. Participants underwent 20-weeks whole-body RET. Measurements of body composition, muscle strength (1-RM) and metabolic health biomarkers (e.g., HOMA-IR) were made pre-and post-RET. BCAA concentrations were determined by gas-chromatography mass spectrometry (GC-MS). No associations were observed across age with BCAA; however, RET elicited (p < 0.05) increases in plasma BCAA (all age-groups), while HOMA-IR scores reduced (p < 0.05) following RET. After RET, positive correlations in lean body mass (p = 0.007) and strength gains (p = 0.001) with fasting BCAA levels were observed. Elevated BCAA are not a robust marker of ageing nor IR in those with a healthy BMI; rather, despite decreasing IR, RET was associated with increased BCAA

    Environmental hypoxia favors myoblast differentiation and fast phenotype but blunts activation of protein synthesis after resistance exercise in human skeletal muscle

    Get PDF
    We hypothesized that a single session of resistance exercise performed in moderate hypoxic (FiO2: 14%) environmental conditions would potentiate the anabolic response during the recovery period spent in normoxia. Twenty subjects performed a 1-leg knee extension session in normoxic or hypoxic conditions. Muscle biopsies were taken 15 min and 4 h after exercise in the vastus lateralis of the exercised and the nonexercised legs. Blood and saliva samples were taken at regular intervals before, during, and after the exercise session. The muscle fractional-protein synthetic rate was determined by deuterium incorporation into proteins, and the protein-degradation rate was determined by methylhistidine release from skeletalmuscle.Wefoundthat:1)hypoxiablunted the activation of protein synthesis after resistance exercise; 2) hypoxia down-regulated the transcriptional program of autophagy; 3) hypoxia regulated the expression of genes involved in glucose metabolism at rest and the genes involved in myoblast differentiation and fusion and in muscle contraction machinery after exercise; and 4) the hypoxia-inducible factor-1alpha pathway was not activated at the time points studied. Contrary to our hypothesis, environmental hypoxia did not potentiate the short-term anabolic response after resistance exercise, but it initiated transcriptional regulations that could potentially translate into satellite cell incorporation and higher force production in the long term

    Glucagon-like peptide 1 infusions overcome anabolic resistance to feeding in older human muscle.

    Get PDF
    BACKGROUND Despite its known insulin-independent effects, glucagon-like peptide-1 (GLP-1) role in muscle protein turnover has not been explored under fed-state conditions or in the context of older age, when declines in insulin sensitivity and protein anabolism, as well as losses of muscle mass and function, occur. METHODS Eight older-aged men (71 ± 1 year, mean ± SEM) were studied in a crossover trial. Baseline measures were taken over 3 hr, prior to a 3 hr postprandial insulin (~30 mIU ml ) and glucose (7-7.5 mM) clamp, alongside I.V. infusions of octreotide and Vamin 14 (±infusions of GLP-1). Four muscle biopsies were taken, and muscle protein turnover was quantified via incorporation of C phenylalanine and arteriovenous balance kinetics, using mass spectrometry. Leg macro- and microvascular flow was assessed via ultrasound and anabolic signalling by immunoblotting. GLP-1 and insulin were measured by ELISA. RESULTS GLP-1 augmented muscle protein synthesis (MPS; fasted: 0.058 ± 0.004% hr vs. postprandial: 0.102 ± 0.005% hr , p < 0.01), in comparison with non-GLP-1 trials. Muscle protein breakdown (MPB) was reduced throughout clamp period, while net protein balance across the leg became positive in both groups. Total femoral leg blood flow was unchanged by the clamp; however, muscle microvascular blood flow (MBF) was significantly elevated in both groups, and to a significantly greater extent in the GLP-1 group (MBF: 5 ± 2 vs. 1.9 ± 1 fold change +GLP-1 and -GLP-1, respectively, p < 0.01). Activation of the Akt-mTOR signalling was similar across both trials. CONCLUSION GLP-1 infusion markedly enhanced postprandial microvascular perfusion and further stimulated muscle protein metabolism, primarily through increased MPS, during a postprandial insulin hyperaminoacidaemic clamp
    corecore