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Abstract: Leucine, isoleucine and valine (i.e., the branched chain amino acids, BCAA) play a key 

role in the support and regulation of tissue protein regulation and also as energy substrates. 

However, positive relationships exist between elevated levels of BCAA and insulin resistance (IR). 

Thus, we sought to investigate the links between fasting plasma BCAA following a progressive 

resistance exercise training (RET) programme, an intervention known to improve metabolic health. 

Fasting plasma BCAA were quantified in adults (young: 18–28 y, n = 8; middle-aged: 45–55 y, n = 9; 

older: 65–75 y, n = 15; BMI: 23–28 kg/m2, both males and females (~50:50), in a cross-sectional, 

intervention study. Participants underwent 20-weeks whole-body RET. Measurements of body 

composition, muscle strength (1-RM) and metabolic health biomarkers (e.g., HOMA-IR) were made 

pre- and post-RET. BCAA concentrations were determined by gas-chromatography mass 

spectrometry (GC-MS). No associations were observed across age with BCAA; however, RET 

elicited (p < 0.05) increases in plasma BCAA (all age-groups), while HOMA-IR scores reduced (p < 

0.05) following RET. After RET, positive correlations in lean body mass (p = 0.007) and strength gains 

(p = 0.001) with fasting BCAA levels were observed. Elevated BCAA are not a robust marker of 

ageing nor IR in those with a healthy BMI; rather, despite decreasing IR, RET was associated with 

increased BCAA. 
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1. Introduction 

Insulin resistance (IR) is a core pathophysiological mechanism which manifests in concert with 

-cell failure, leading to type 2 diabetes mellitus (T2DM) [1] a disease that is expected to increase in 

prevalence to affect 592 million by 2035 (382 million in 2013) [2]. Given that this disease is most 

apparent in older individuals (>65 years) [3] in whom life expectancy has increased [4], this has, and 

will continue, to result in a burgeoning healthcare burden. While the aetiology of IR and T2DM are 

complex, there has been long-standing curiosity in relation to a potential link between the branched 

chain amino acids (BCAA) leucine, isoleucine and valine, which account for ~35% of the essential 

amino acids (EAA) in muscle proteins [4], and IR. 
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In pioneering studies, Felig et al. [5] demonstrated strong correlations between elevated 

circulatory BCAA concentrations and insulin levels in human obesity, that were corrected by weight 

loss. More recently, reports of elevated BCAA in obese and/or IR individuals have been substantiated 

in longitudinal [6] and cross-sectional [7] studies, as well as across various ethnic groups [8]. For 

example, Newgard et al. [9] reported positive associations between circulating BCAA concentrations 

and increased risk of IR and T2DM, and metabolomic profiling of >100 plasma analytes revealed 

elevated levels of BCAA and select other metabolites as a metabolic “footprint” of IR [9]. This was 

based on five principle components that accounted for the greatest differences between obese and 

lean subjects; a combination of BCAA, aromatic AA (phenylalanine and tyrosine), Glx (glutamine 

and/or glutamate) and acyl-carnitines (C3 and C5), indicating interplay between AA and lipid 

metabolism [10]. Moreover, the role of BCAA in IR was further cemented with observations that 

lower BCAA levels correlated with improved markers of insulin sensitivity (IS) following weight-

loss interventions enhancing glycaemic control [11,12]. In addition to this, more recent studies have 

reported that BCAA-mediated IR may be compounded by IR, further exacerbating BCAA 

accumulation [13,14]. Finally, pre-clinical [7,15,16] and clinical [10,17] studies have shown that 

BCAA-mediated IR, at least in part, lies at the level of skeletal muscle [11,18]. 

Nonetheless, that circulatory BCAA positively links to IR does not alter the positive effects that 

dietary BCAA have upon skeletal muscle metabolism. The role of BCAA in stimulating muscle 

protein synthesis and supporting muscle hypertrophy following resistance exercise training (RET, 

[5,19,20]) is well-documented. Further, leucine acts not only as a substrate for newly synthesised 

proteins and as a regulatory signalling metabolite activating anabolic pathways [21,22], but is also a 

potent insulin secretagogue with the potential to enhance peripheral glucose uptake and to inhibit 

whole-body and muscle protein degradation via inducing insulin secretion [23–27]. These properties 

of BCAA demonstrate the importance of their role in maintaining and increasing skeletal muscle 

mass [24,25]. Yet despite these key metabolic roles, sustained elevated levels of circulating plasma 

BCAA remain widely implicated in the pathophysiology of IR [18,19], and the ensuing development 

of T2DM. 

Collectively, previous studies implicate BCAA in the pathogenesis of IR and T2D. Nonetheless, 

there remain few intervention-type studies (weight-loss, drugs, exercise, etc.) examining such links 

under circumstances promoting IS and metabolic health, e.g., exercise. Specifically, resistance 

exercise training (RET) is one such powerful countermeasure to improve metabolic health and to 

mitigate age-associated declines in muscle mass and function across the lifespan [28], even in frail 

elderly individuals [29,30]. As such, we investigated the effects of 20 weeks of fully supervised RET 

in relation to fasting plasma BCAA concentrations and metabolic/physiological health parameters. 

We hypothesised that: (1) ageing would be associated with increased BCAA, (2) RET would reduce 

BCAA and (3) that this would be associated with improvements in IR (i.e., HOMA-IR) and/or or other 

indices of metabolic health. 

2. Materials and Methods 

2.1. Ethical Approval 

The present study samples originated from previously published work by our research group 

[28]. This study was reviewed and approved by the University of Nottingham Faculty of Medicine 

and Health Sciences Research Ethics Committee (D/2/2006) and complied with the 2013 Declaration 

of Helsinki. All procedures and risks were thoroughly explained to volunteers and written consent 

was obtained prior to participation. 

2.2. Participant Characteristics 

Three participant cohorts were studied, consisting of young (18-28 years, n = 8, BMI: 24±1 kg/m2), 

middle-aged (45–55 years, n = 9, BMI: 27 ± 1 kg/m2) and older (65–75 years, n = 15, BMI: 27 ± 1 kg/m2) 

men and women (~50:50). All participants were screened by a medical questionnaire (past and 

existing medical conditions, lifestyle choices), physical examination, clinical chemistry blood profiles 
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(liver function tests (LFTs), thyroid function tests (TFTs), full blood count (FBC), urea and electrolytes 

(U and E’s), fasting glucose, fasting insulin, clotting factors and lipid profiles) and a resting ECG. 

Participants were not taking any medication at the time of study, had normal blood chemistry, were 

normotensive (BP <139/89) and did not smoke (nor had they in the past 5 years). Participants were 

excluded from the study for any metabolic, respiratory or cardiovascular disorders including insulin 

resistance, dyslipidaemia, uncontrolled asthma, or family history of heightened cardiovascular 

disease risk (cardiovascular event <55 years). Participants performed activities of daily living but did 

not participate in formal aerobic exercise training and had not participated in structured RET in the 

last 2 years. All study sessions were performed at the University of Nottingham Medical School at 

the Royal Derby Hospital Centre. The exercise intervention was conducted at two sites, based on 

geographical proximity to the volunteers. All exercise sessions were fully supervised by a single 

member of research staff. 

2.3. Participation Overview 

Before study days (before and after RET), volunteers were instructed to refrain from strenuous 

exercise (including the RET intervention) for 72 h and from alcohol or caffeine for 24 h. On each study 

day, volunteers reported to the laboratory at 09:00 h, following an overnight fast (water ad libitum) 

from 21:00 h the evening before. Body composition was assessed via dual-energy X-ray 

absorptiometry (DXA; Lunar Prodigy II, GE Medical Systems) with all regions automatically assessed 

by the integrated software package (Encore software, GE Healthcare). Blood samples were taken from 

the antecubital vein and collected into lithium-heparin containing vacutainers for measures of plasma 

metabolites, insulin and glucose concentrations, with the plasma-fraction collected following 

centrifugation at 2000×G for 20 min at 4 C. All samples were stored at −80 C from collection until 

further analysis. 

The RET programme was designed to achieve muscle hypertrophy based on previous 

recommendations [31]. As such, the RET programme comprised fully supervised exercise sessions, 3 

times each week, with each session lasting approximately 60 min. Two sets of 8–12 repetitions of three 

upper and three lower body exercises were performed in each session. To achieve progressive 

overload, training intensity was increased from 40% to 60% 1-RM (repetition maximum) during 4 

weeks of induction training (to ensure adoption of correct technique and exercise familiarisation) and 

was then set at 70% 1-RM for the remainder of the training with 1-RM re-assessment every 4 weeks 

to ensure progression and consistency of training intensity. 

2.4. Analytical Methods 

2.4.1. Plasma Amino Acid Concentrations 

To determine plasma AA concentrations, we added stable isotopically labelled internal 

standards and prepared samples according to our standard methods [20]. Briefly, heparinized plasma 

proteins were precipitated with 1 mL ice cold ethanol and centrifuged at 10,000 rpm for 5 min, the 

supernatant was removed and evaporated to dryness under nitrogen at 90 °C, followed by re-

suspension in 0.5M HCI. Ethyl acetate was then added, and samples were vortexed thoroughly before 

the upper, ethyl acetate layer (containing lipids) was extracted. The aqueous AA-containing layer 

was evaporated to dryness under a steady flow of nitrogen at 90 C. Derivatization of the dry residue 

was achieved via addition of equal volumes of acetonitrile and N-Methyl-N-(tert-

butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and incubated at 90 C for 45 min, thus 

converting the AA to their t-BDMS derivatives [20]. A pooled plasma QC sample was prepared with 

each batch and injected throughout the batch run to monitor instrument performance over time. This 

was achieved by pooling small aliquots of each study sample and thoroughly mixing. Aliquots of 

study-specific samples were used to closely mimic metabolite composition of the samples being 

tested, with the purpose being to account for analyst and analytical variation during sample 

preparation and batch run, respectively. AA concentrations were determined with reference to a 

calibration curve composed of a standard AA mix of known quantity and analysed by GC-MS. 
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2.4.2. GC-MS Conditions 

To quantify plasma AA concentrations, 0.5 µl of sample was injected into an ISQ Trace 1300 

single quadrupole GC-MS (ThermoFisher Scientific, Hemel Hempstead, UK). A split injection mode 

(1:10) was used, at an initial oven temperature of 100 C held for 1 min, with a temperature ramp of 

12 C/ min to 300 C and held for 5 min. Helium was used as a carrier gas at a flow rate of 1.5 mL/min, 

and sample separation was achieved on a 30 m Rxi-5MS (0.25 mm internal diameter, 0.25 µm 

thickness) fused silica column (Restek, Bellafonte, Pennsylvania). A selected ion monitoring scan 

(SIM) was created to search AA standards for leucine (mass 302), isoleucine (mass 302) and valine 

(mass 288), with corresponding isotopically labelled internal standards (304 and 289 for leucine and 

valine, respectively), or norleucine for isoleucine quantitation, included in the SIM. 

2.5. Insulin and Glucose Concentrations 

Plasma insulin and glucose concentrations, as well as lipoprotein content, was assessed in 

samples from before and after RET, as reported [28]. In brief, plasma insulin and glucose were 

measured in duplicate, using undiluted samples. Insulin was assessed via a high-sensitivity human 

insulin ELISA (DRG Instruments GmbH, Marburg, Germany) according to the manufacturer’s 

instructions. Plasma glucose was measured using a clinical chemistry analyser (ILAB 300 Plus 

Clinical Chemistry System, Warrington, Cheshire, UK) against commercial standards. Insulin 

sensitivity was calculated using the homeostatic model assessment of insulin resistance (HOMA-IR) 

and the following Formula: 

(HOMA-IR=plasma glucose concentration (mmol.l−1) x plasma insulin 

concentration (mU.l−1))/22.5 
 

Circulating plasma lipoprotein concentrations (low-density lipoprotein (LDL) and high-density 

lipoprotein (HDL)) were analysed by the Clinical Pathology Laboratory at the Royal Derby Hospital. 

2.6. Statistical Analysis 

Principal component analysis (PCA) was used as multivariate analysis, firstly to reduce the 

number of variables to principal component clusters with scores of IS (HOMA-IR) and then with the 

addition of additional clinical variables (i.e., insulin, glucose, HDL, LDL, etc). Multiple linear 

regression (MLR) analyses were first used to identify which variables correlated with scores of IS, 

and then stepwise regression analyses were performed to reveal any potentially novel associations 

with BCAA concentrations. These correlations were performed at baseline and post-RET. 

Relationships that were identified were then isolated and further correlation was determined to 

describe the strength and significance of the interaction. Statistical analysis was performed in R-

Studio employing in-house R scripts. Subsequent statistical analyses were confirmed in Prism v8.3 

(GraphPad, La Jolla, California, USA) version 7. All data are reported as mean  SEM, with 

significance set at p < 0.05. Data were tested for normality to determine appropriate analysis. Paired 

t-tests were used to assess the effects of RET, with Pearson’s correlation used to explore relationships 

between fasting plasma BCAA concentrations and clinical parameters, such as body composition, fat 

mass, fat free mass and IS. 

3. Results 

3.1. Muscle Mass and Function 

The characteristics of our participants at baseline and following RET are listed in table 1. As 

previously reported, 20 weeks of our whole-body RET programme elicited improvements in strength 

irrespective of age. However, whole-body lean mass gains were only seen in the young and middle-

aged groups [28], with a significant negative correlation between age and hypertrophy [32]. 
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Table 1. Participant demographics M: F denotes n of males to females per group. 

Participant ID Baseline (BL) Post-RET 

Sex Young (4: 4 M: F) Middle (5: 4 M: F) Old (8: 7 M: F)  

Age (years) 53 ± 19  

BMI (kg/m2) 26 ± 3 26 ± 2 

Fasting Glucose (mg/dL) 5.6 ± 0.6 5.3 ± 0.7 

Fasting Insulin (µU/mL) 4.9 ± 2 4.5 ± 1.5 

HOMA-IR (AU) 1.4 ± 0.9 1.1 ± 0.4 * 

3.2. Circulating BCAA Levels 

No correlation was seen with age and BCAA concentrations either pre- or post-RET (Figure 1A 

and Figure 1B, respectively). Additionally, no relationship existed between HOMA-IR and age either 

at baseline (1C) or post-RET (1D). For each of the individual age-groups, and when all the age-groups 

were collapsed into a single cohort, RET resulted in significantly elevated BCAA concentrations 

(leucine, p = 0.0011; isoleucine, p = 0.0004; valine, p = 0.03 (Figure 2)). Pooled QC throughout the 

instrumental run yielded ~5% CV for each AA. Furthermore, there were no apparent sex interactions, 

with both sexes responding similarly to the RET programme. Therefore, data from all age groups 

were collapsed into one group (n = 32). 

 

Figure 1. The relationship between circulating branched chain amino acid (BCAA) concentrations and 

age at baseline (A) and after (B) 20 weeks of supervised, whole-body resistance exercise training (RET) 

(n = 8–15/ group) and in distinct age groups at baseline (C) and after RET (D). 
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Figure 2. Circulating plasma leucine (A), isoleucine (B) and valine (C) at baseline and after 20 weeks, 

fully supervised, whole-body resistance exercise training (RET) (n = 32). Bars represent mean and 

SEM. Quantification achieved via GC-MS with reference to a calibration curve. Statistical analysis via 

paired t-tests. * p < 0.05; *** p < 0.001 vs. baseline. 

3.3. HOMA-IR and Fasting Plasma BCAA Concentrations 

Both body mass index (BMI) and HOMA-IR were significantly reduced (p < 0.05) after RET, 

suggesting improved IS in our volunteers (Figure 3A). However, there was no correlation between 

BCAA concentrations and HOMA-IR in any group either before (Figure 3B) or after RET (Figure 3C), 

despite significant alterations in each. 

 

Figure 3. Insulin resistance (via homeostatic model assessment of insulin resistance (HOMA-IR) at 

baseline and after 20 weeks, fully supervised, whole-body resistance exercise training (RET) (A) and 

the relationship between IR and circulating branched chain amino acid (BCAA) concentrations at 

baseline (B) and after (C) RET. * p < 0.05 vs. baseline. 

3.4. Relationships between BCAAs and Clinical Variables of Health 

To visually explore whether there were any novel relationships from our study, data were log 

transformed for PCA analysis (Figure 4A) to investigate whether there were metabolite clusters 

which could illustrate differences in variables either at baseline or with RET, however this revealed 

that there were no distinct clustering of metabolites that co-vary (at baseline or post-RET). Using the 

same variables and fasting plasma BCAA concentrations, we aimed to explore potential links that 

may be of interest with a correlational matrix in the form of a heatmap (Figure 4B). MLR was first 

used to test whether HOMA-IR or other clinical variables of health could predict BCAA 

concentrations in our healthy participants. At baseline, the results of the linear model predictors 
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explain 29% of the variance with a residual standard error (RSE) of 40.06 on 9 degrees of freedom 

(DOF) and of 21 (adjusted R2 = −0.006, F = 0.978 {on 9 and 21 DOF}, p = 0.484). Following RET, the 

results describe 73% of the variance with a RSE of 30.15 on 21 DOF (adjusted R2 = 0.616, F = 0.653 {on 

9 and 21 DOF}, p = 0.0002) which revealed strength as a significant (p = 0.002) associated variable with 

BCAA and other co-variates. Following this, stepwise regression was used to uncover which 

combination of our measured co-variates would best predict post-RET levels of plasma BCAA, and 

the stepwise regression model explains 69% of the variance with an RSE of 28.42 on 27 DOF (adjusted 

R2 = 0.659, F = 20.37 {on 3 and 27 DOF}, p = 4.19) which revealed strength (p = 0.001), LDL (p = 0.001) 

and BMI (p = 0.1) as significant and promising variables in predicting post-RET levels of BCAA. 

 

Figure 4. Principle component analysis (PCA) plot visually displaying overlap of clinical variables of 

health; no distinctive clustering of metabolites predicative of circulating branched chain amino acid 

(BCAA) concentrations are present at baseline (red), nor emerge following resistance exercise training 

(RET) (green) (A). Heatmap of correlations that are predictive of circulating BCAA concentrations at 

baseline (B) and after RET (C). The strength of relationships are based on a scale of −1 (red), 

representing a negative relationship and 1 (blue) a positive relationship. The strength of the 

relationships are depicted by the size of the circle. 

3.5. Muscle Mass, Strength, Body Fat % and Circulating BCAA 

Although there was no relationship between plasma BCAA concentrations and muscle strength 

(r =−0.04, p = 0.846) or mass (r = 0.14, p = 0.447) prior to RET (Figure 5A,C), increases in muscle strength 

and mass with RET resulted in significantly positive relationships between BCAA concentrations and 

both strength (r = 0.53, p = 0.001) and mass (r = 0.47, p = 0.007) post-RET (Figure 5B,D). Given the 

expected increases in lean mass as a result of RET, it was unsurprising that body fat percentage 

decreased (p<0.005), however an interesting observation was that the post-RET trend of increased 

plasma BCAA concentrations correlated with decreases in body fat percentage (p = 0.06, r =−0.33; 

Figure 5E,F). 
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Figure 5. The relationship between circulating branched chain amino acid (BCAA) concentrations and 

muscle strength (A,B), mass (C,D) and body fat percentage (E,F) at baseline and after 20 weeks, fully-

supervised, whole-body resistance exercise training (RET) (n = 32). 

3.6. Body Fat, HDL, LDL and Plasma BCAA 

LDL and HDL levels were unchanged by RET. However, a positive trend between fasting 

plasma BCAA concentrations and LDL was observed at baseline (r = 0.3, p = 0.08; Figure 6A), which 

was significant following RET (r = 0.48, p = 0.008; Figure 6B). 

 

Figure 6. The relationship between circulating BCAA levels and low-density lipoprotein (LDL) before (A) and 

after 20 weeks of fully supervised, whole-body resistance exercise training (RET) (B) (n = 32). 

4. Discussion 

In the present study, we did not observe the commonly reported associations between HOMA-

IR and BCAA [10]. These data likely demonstrate that whilst elevated BCAA have been linked to 

increased risk of T2DM [7] and are a hallmark of obesity [10], this relationship may not hold in 
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individuals within a healthy BMI range. Moreover, our data do point to the notion that elevated 

BCAA are not an inevitable hallmark of “healthy ageing”. In support of this, in a previous study 

investigating the links between BCAA and cardio-metabolic risk factors, it was noted that reduced, 

rather than increased BCAA were evident in very old age [33]. 

While this may be due to chronic alterations in diet and the ageing gastrointestinal system, and 

dietary behaviors may have some influence, it once again highlights that elevated fasted plasma 

BCAA are not an all-encompassing biomarker of metabolic risk. Interestingly, recent studies [34] have 

been published which show that BCAAs robustly correlate with HOMA-IR, as well as 

cardiometabolic and metabolic risk factors and mortality and it has been proposed that lowered 

BCAAs, particularly in older individuals, are inversely associated with health risk factors. This has 

further been expanded by other studies showing that short-term (28 days) dietary overconsumption 

increases plasma BCAAs (namely driven by isoleucine and valine) in line with weight gain [35]. 

However, nutritional intervention studies alone are not able to account for the perturbation in BCAA 

metabolism which RET can induce, although clearly the link between circulating BCAAs and health 

continues to remain a paradoxical one. Promisingly, studies have shown that the relationship 

between plasma BCAAs, dietary intake and their regulation on whole-body weight are comparable 

in both humans and mice [36], which may provide the potential for future studies examining the role 

of BCAAs in human health. Although, clearly BCAAs are essential for humans and exercise is 

beneficial to overall health, therefore caution ought to be taken when proposing whether plasma 

BCAAs are a positive or negative marker of health, as this relationship is likely to be dependent on 

context and the demographics of the individuals studied. 

It is noted that lean mass gains were not evident in our older participants, and work from our 

lab has indeed shown this may be due to anabolic resistance [37], which itself is multi-faceted 

(reduced translational capacity, hormonal efficiency and reduced MPS/increased MPB), however 

RET still remains the most effective method of counteracting the age-related declines in loss of lean 

mass [38], particularly if it is combined with, for example, exogenous testosterone administration [39] 

or protein supplementation [40,41]. 

Based on previous correlations between BCAA and IR, we predicted that RET would improve 

biomarkers of metabolic risk and concomitantly reduce BCAA concentrations. Instead we noted a 

reduction in HOMA-IR, in the face of a systematic increase in each of the BCAAs. The lack of this 

relationship was first highlighted in our principal components’ analyses, and its absence was 

confirmed with Pearson’s regression. These findings demonstrate that lowering of BCAA is not an 

inevitable consequence of improved metabolic health, i.e., HOMA-IR. Instead, following RET, our 

PCA matrix plots comparing a number of variables with plasma BCAA levels revealed the most 

positively correlated facets to circulatory BCAA to be muscle mass and strength, thus illustrating 

novel positive links between muscle mass and circulatory BCAA (following RET). Basal (i.e., not 

under circumstances of exposure to a muscle growth regime) relationships have also been reported; 

Borg et al. [42] report data on 227 older (>65 y) volunteers from a cross-sectional study showing 

reduced levels of BCAA correlating with lower skeletal muscle mass, strength and longer sit-to-stand 

times. These data were also consistent with previous studies [43] supporting the notion that low 

BCAA concentrations, particularly leucine, correlate with diminishing lean mass and sarcopenia. Our 

data in healthy individuals are in-line with studies suggesting that BCAA are a marker of muscle 

mass/strength [42,43], and may also indicate that relationships with obesity could in fact reflect the 

notion that obese individuals have greater anti-gravity muscle mass than healthy weight 

counterparts [44–46]. In other words, links to fat mass may be a misconception, i.e., with heightened 

fat mass reflecting heightened lean mass in obese individuals. 

An interesting finding of this study was a positive correlation between BCAA and LDL after 

RET. Increased plasma LDL, particularly in older individuals, is a recognised risk factor for the 

development of conditions such as metabolic dyslipidaemia and coronary heart disease [47], 

particularly in the face of reduced HDL levels [48], making this link between elevated BCAA and 

LDL in the present study an intriguing, though paradoxical, finding given the improvements in other 

markers of metabolic health. A potential explanation for elevated LDL may be the established link 
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between leucine and valine and cholesterol metabolism. Leucine and valine constituent metabolites 

(such as α-ketoisocaproate (α-KIC), β-Hydroxy β-methylbutyric acid (HMB), mevalonate and 3-

hydroxyisobutyrate (3-HIB)) contribute to an increased cholesterol metabolism [19,49–51], which 

may be the case with our study participants given the increased concentration of BCAA following 

RET. Increased BCAA concentrations are reported to increase insulin action in hepatic cells [52], 

resulting in prolonged gluconeogenesis leading to impaired hepatic lipid homeostasis, which leads 

to the accumulation of triglycerides and other fatty acids [53]. Given that adipose tissue is effective 

in converting BCAA carbon skeletons to de novo fatty acid synthesis ex-vivo [54] and constitutes a 

major site where excess BCAA may be converted to lipid species, it would be reasonable to propose 

that inter-organ metabolism is implicated in the rise of lipid species in plasma. Both liver [52] and 

adipose tissue [55] may therefore be important organs in defining the relationship between BCAA 

and dyslipidemia due to their central roles in glucose and lipid metabolism, respectively. Positive 

associations between plasma BCAA and dyslipidaemia have been reported previously, particularly 

for circulating LDL [48], and in both diabetic and non-diabetic follow-up studies [15,56]. Moreover, 

even when adjusted for BMI, BCAA remain significantly correlated to triglyceride levels [56], 

suggesting at least a partial role of BCAA on circulating lipid species. Alternatively, the changes seen 

with LDL here could be due in part to the training modality used in the present study because, while 

the effects of endurance exercise in eliciting reduction of plasma LDL is well-known [57], the effects 

of RET on the same parameters are not as well established. 

The present study is not without its limitations. For example, although our participants are well-

matched in terms of lean mass at baseline, our low sample size is an acknowledged limitation, 

although performing much larger highly controlled interventional trials are clearly a major 

undertaking. In addition, intra-group variability with regards to daily activity levels may pose 

potential confounding variables, as high levels of physical activity can lead to inadvertent stimulation 

of muscle remodelling [58,59]. Also, since our participants were healthy and within a normal BMI 

range, our results should be extrapolated to cohorts fitting of similar criteria. Additionally, 

investigation into the effects of dietary intake in both sexes would provide some insight into the 

regulation of plasma BCAAs; however, absorption rates as well as the quantity of ingested dietary 

BCAA that eventually reaches blood circulation [60–63] is unclear, as is whether plasma levels of 

BCAAs reflect short-term or long-term dietary intake [60]. Rodent studies [64] looking into the long-

term effects of dietary BCAA control on health and lifespan have proposed mechanisms that exist for 

the elevation of BCAA’s which involve notable interactions with tryptophan and threonine. Thus, 

studies looking into the temporal basis of dietary BCAA intake, and the influence of the gut 

microbiome [65], could provide an insight into the causal relationships of this link.  

5. Conclusions 

In summary, twenty weeks RET in a tightly controlled and longitudinal intervention elicits 

significant increases in all of the BCAA, which are commonly reported to be markers of poor IS. These 

increases do not correlate with indices of IS or body fat. However, they significantly correlate to 

strength and lean whole-body mass changes (post-RET) irrespective of age or sex, highlighting a 

novel link that warrants further investigation. 
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