3 research outputs found

    Co-Regulation of Protein Coding Genes by Transcription Factor and Long Non-Coding RNA in SARS-CoV-2 Infected Cells: An In Silico Analysis

    No full text
    Altered expression of protein coding gene (PCG) and long non-coding RNA (lncRNA) have been identified in SARS-CoV-2 infected cells and tissues from COVID-19 patients. The functional role and mechanism (s) of transcriptional regulation of deregulated genes in COVID-19 remain largely unknown. In the present communication, reanalyzing publicly available gene expression data, we observed that 66 lncRNA and 5491 PCG were deregulated in more than one experimental condition. Combining our earlier published results and using different publicly available resources, it was observed that 72 deregulated lncRNA interacted with 3228 genes/proteins. Many targets of deregulated lncRNA could also interact with SARS-CoV-2 coded proteins, modulated by IFN treatment and identified in CRISPR screening to modulate SARS-CoV-2 infection. The majority of the deregulated lncRNA and PCG were targets of at least one of the transcription factors (TFs), interferon responsive factors (IRFs), signal transducer, and activator of transcription (STATs), NFκB, MYC, and RELA/p65. Deregulated 1069 PCG was joint targets of lncRNA and TF. These joint targets are significantly enriched with pathways relevant for SARS-CoV-2 infection indicating that joint regulation of PCG could be one of the mechanisms for deregulation. Over all this manuscript showed possible involvement of lncRNA and mechanisms of deregulation of PCG in the pathogenesis of COVID-19

    DeepSGP: Deep Learning for Gene Selection and Survival Group Prediction in Glioblastoma

    No full text
    Glioblastoma Multiforme (GBM) is an aggressive form of glioma, exhibiting very poor survival. Genomic input, in the form of RNA sequencing data (RNA-seq), is expected to provide vital information about the characteristics of the genes that affect the Overall Survival (OS) of patients. This could have a significant impact on treatment planning. We present a new Autoencoder (AE)-based strategy for the prediction of survival (low or high) of GBM patients, using the RNA-seq data of 129 GBM samples from The Cancer Genome Atlas (TCGA). This is a novel interdisciplinary approach to integrating genomics with deep learning towards survival prediction. First, the Differentially Expressed Genes (DEGs) were selected using EdgeR. These were further reduced using correlation-based analysis. This was followed by the application of ranking with different feature subset selection and feature extraction algorithms, including the AE. In each case, fifty features were selected/extracted, for subsequent prediction with different classifiers. An exhaustive study for survival group prediction, using eight different classifiers with the accuracy and Area Under the Curve (AUC), established the superiority of the AE-based feature extraction method, called DeepSGP. It produced a very high accuracy (0.83) and AUC (0.90). Of the eight classifiers, using the extracted features by DeepSGP, the MLP was the best at Overall Survival (OS) prediction with an accuracy of 0.89 and an AUC of 0.97. The biological significance of the genes extracted by the AE were also analyzed to establish their importance. Finally, the statistical significance of the predicted output of the DeepSGP algorithm was established using the concordance index
    corecore