1,199 research outputs found

    Proving Abstractions of Dynamical Systems through Numerical Simulations

    Full text link
    A key question that arises in rigorous analysis of cyberphysical systems under attack involves establishing whether or not the attacked system deviates significantly from the ideal allowed behavior. This is the problem of deciding whether or not the ideal system is an abstraction of the attacked system. A quantitative variation of this question can capture how much the attacked system deviates from the ideal. Thus, algorithms for deciding abstraction relations can help measure the effect of attacks on cyberphysical systems and to develop attack detection strategies. In this paper, we present a decision procedure for proving that one nonlinear dynamical system is a quantitative abstraction of another. Directly computing the reach sets of these nonlinear systems are undecidable in general and reach set over-approximations do not give a direct way for proving abstraction. Our procedure uses (possibly inaccurate) numerical simulations and a model annotation to compute tight approximations of the observable behaviors of the system and then uses these approximations to decide on abstraction. We show that the procedure is sound and that it is guaranteed to terminate under reasonable robustness assumptions

    Trajectory Aware Macro-cell Planning for Mobile Users

    Full text link
    We design and evaluate algorithms for efficient user-mobility driven macro-cell planning in cellular networks. As cellular networks embrace heterogeneous technologies (including long range 3G/4G and short range WiFi, Femto-cells, etc.), most traffic generated by static users gets absorbed by the short-range technologies, thereby increasingly leaving mobile user traffic to macro-cells. To this end, we consider a novel approach that factors in the trajectories of mobile users as well as the impact of city geographies and their associated road networks for macro-cell planning. Given a budget k of base-stations that can be upgraded, our approach selects a deployment that impacts the most number of user trajectories. The generic formulation incorporates the notion of quality of service of a user trajectory as a parameter to allow different application-specific requirements, and operator choices.We show that the proposed trajectory utility maximization problem is NP-hard, and design multiple heuristics. We evaluate our algorithms with real and synthetic data sets emulating different city geographies to demonstrate their efficacy. For instance, with an upgrade budget k of 20%, our algorithms perform 3-8 times better in improving the user quality of service on trajectories in different city geographies when compared to greedy location-based base-station upgrades.Comment: Published in INFOCOM 201
    corecore