632 research outputs found

    Imaging Deformed Proteins: Characterising the State Fully

    Get PDF
    By analysing the positions of individual unit cells in the image of a distorted macromolecular crystal, it is possible to achieve considerably more than is achieved by the correlation averaging or unbending now widely practised. It is possible partly to compensate for individual molecular distortion; and it is possible to identify molecules in equivalent environments (which can be expected to be in equivalent states of strain), selective averaging of which yields images that show how strain is accommodated at the sub-molecular level. The possible presence of surface forces applied to the crystal by its support film complicates the analysis and adds two additional parameters, not previously identified, to those necessary to characterise the environment of each molecule fully; these surface stress parameters can be estimated on the basis of a simple (isotropic) model of the elastic behaviour of a 2-D crystal. The appropriate mathematical description of strain and elasticity in 2-D crystals has been assembled concisely, and a set of new procedures developed allowing their practical exploitation within the Semper image processing system

    Interactive Image Processing for Electron Microscopy: Matching Hardware with Software

    Get PDF
    The image processing techniques used \u27a posteriori\u27 to extract information from electron micrographs are surveyed, including particularly image averaging, selective averaging, 3-D reconstruction, and high resolution focal series restoration; recent developments in online image pick up and control have led to fully automatic focussing, stigmating and alignment by a frame store system equipped with a real time correlator board. The diversity of the techniques encountered calls for large integrated program systems with flexible command languages; however, a dilemma exists between providing the user with convenient control of special hardware facilities such as frame stores and array processors, and preventing the programs from becoming so specific that they are extremely short lived. Some of the compromises made in the Semper system are noted

    Anomalous ion diffusion within skeletal muscle transverse tubule networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Skeletal muscle fibres contain transverse tubular (t-tubule) networks that allow electrical signals to rapidly propagate into the fibre. These electrical signals are generated by the transport of ions across the t-tubule membranes and this can result in significant changes in ion concentrations within the t-tubules during muscle excitation. During periods of repeated high-frequency activation of skeletal muscle the t-tubule K<sup>+ </sup>concentration is believed to increase significantly and diffusive K<sup>+ </sup>transport from the t-tubules into the interstitial space provides a mechanism for alleviating muscle membrane depolarization. However, the tortuous nature of the highly branched space-filling t-tubule network impedes the diffusion of material through the network. The effective diffusion coefficient for ions in the t-tubules has been measured to be approximately five times lower than in free solution, which is significantly different from existing theoretical values of the effective diffusion coefficient that range from 2–3 times lower than in free solution. To resolve this discrepancy, in this paper we study the process of diffusion within electron microscope scanned sections of the skeletal muscle t-tubule network using mathematical modelling and computer simulation techniques. Our model includes t-tubule geometry, tautness, hydrodynamic and non-planar network factors.</p> <p>Results</p> <p>Using our model we found that the t-tubule network geometry reduced the K<sup>+ </sup>diffusion coefficient to 19–27% of its value in free solution, which is consistent with the experimentally observed value of 21% and is significantly smaller than existing theoretical values that range from 32–50%. We also found that diffusion in the t-tubules is anomalous for skeletal muscle fibres with a diameter of less than approximately 10–20 μm as a result of obstructed diffusion. We also observed that the [K<sup>+</sup>] within the interior of the t-tubule network during high-frequency activation is greater for fibres with a larger diameter. Smaller skeletal muscle fibres are therefore more resistant to membrane depolarization. Because the t-tubule network is anisotropic and inhomogeneous, we also found that the [K<sup>+</sup>] distribution generated within the network was irregular for fibres of small diameter.</p> <p>Conclusion</p> <p>Our model explains the measured effective diffusion coefficient for ions in skeletal muscle t-tubules.</p

    Observation of Parity Nonconservation in Moller Scattering

    Full text link
    We report a measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -175 +/- 30 (stat.) +/- 20 (syst.) parts per billion. This first direct observation of parity nonconservation in Moller scattering leads to a measurement of the electron's weak charge at low energy Q^e_W = -0.053 +/- 0.011. This is consistent with the Standard Model expectation at the current level of precision: sin^2\theta_W(M_Z)_MSbar = 0.2293 +/- 0.0024 (stat.) +/- 0.0016 (syst.) +/- 0.0006 (theory).Comment: Version 3 is the same as version 2. These versions contain minor text changes from referee comments and a change in the extracted value of Q^e_W and sin^2\theta_W due to a change in the theoretical calculation of the bremsstrahulung correction (ref. 16

    Precision Measurement of the Weak Mixing Angle in Moller Scattering

    Get PDF
    We report on a precision measurement of the parity-violating asymmetry in fixed target electron-electron (Moller) scattering: A_PV = -131 +/- 14 (stat.) +/- 10 (syst.) parts per billion, leading to the determination of the weak mixing angle \sin^2\theta_W^eff = 0.2397 +/- 0.0010 (stat.) +/- 0.0008 (syst.), evaluated at Q^2 = 0.026 GeV^2. Combining this result with the measurements of \sin^2\theta_W^eff at the Z^0 pole, the running of the weak mixing angle is observed with over 6 sigma significance. The measurement sets constraints on new physics effects at the TeV scale.Comment: 4 pages, 2 postscript figues, submitted to Physical Review Letter

    A Search for Jet Handedness in Hadronic Z0Z^0 Decays

    Get PDF
    We have searched for signatures of polarization in hadronic jets from Z0qqˉZ^0 \to q \bar{q} decays using the ``jet handedness'' method. The polar angle asymmetry induced by the high SLC electron-beam polarization was used to separate quark jets from antiquark jets, expected to be left- and right-polarized, respectively. We find no evidence for jet handedness in our global sample or in a sample of light quark jets and we set upper limits at the 95% C.L. of 0.063 and 0.099 respectively on the magnitude of the analyzing power of the method proposed by Efremov {\it et al.}Comment: Revtex, 8 pages, 2 figure

    Measurement of the branching ratios of the Z0 into heavy quarks

    Full text link
    We measure the hadronic branching ratios of the Z0 boson into heavy quarks: Rb=Gamma(Z0->bb)/Gamma(Z0->hadrons) and Rc=Gamma(Z0->cc/Gamma(Z0->hadrons) using a multi-tag technique. The measurement was performed using about 400,000 hadronic Z0 events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector were used to reconstruct bottom and charm hadron decay vertices with high efficiency and purity, which enables us to measure most efficiencies from data. We obtain, Rb=0.21604 +- 0.00098(stat.) +- 0.00073(syst.) -+ 0.00012(Rc) and, Rc= 0.1744 +- 0.0031(stat.) +- 0.0020(syst.) -+ 0.0006(Rb)Comment: 37 pages, 8 figures, to be submitted to Phys. Rev. D version 2: changed title to ratios, used common D production fractions for Rb and Rc and corrected Zgamma interference. Identical to PRD submissio

    Direct Measurements of A_b and A_c using Vertex/Kaon Charge Tags at SLD

    Get PDF
    Exploiting the manipulation of the SLC electron-beam polarization, we present precise direct measurements of the parity violation parameters A_c and A_b in the Z boson - c quark and Z boson - b quark coupling. Quark/antiquark discrimination is accomplished via a unique algorithm that takes advantage of the precise SLD CCD vertex detector, employing the net charge of displaced vertices as well as the charge of kaons that emanate from those vertices. From the 1996-98 sample of 400,000 Z decays, produced with an average beam polarization of 73.4%, we find A_c = 0.673 +/- 0.029 (stat.) +/- 0.023 (syst.) and A_b = 0.919 +/- 0.018 (stat.) +/- 0.017 (syst.).Comment: 11 pages, 2 figures, 2 tables, to be submitted to Physical Review Letters; version 2 reflects changes suggested by the refere

    Additive scales in degenerative disease - calculation of effect sizes and clinical judgment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The therapeutic efficacy of an intervention is often assessed in clinical trials by scales measuring multiple diverse activities that are added to produce a cumulative global score. Medical communities and health care systems subsequently use these data to calculate pooled effect sizes to compare treatments. This is done because major doubt has been cast over the clinical relevance of statistically significant findings relying on <it>p </it>values with the potential to report chance findings. Hence in an aim to overcome this pooling the results of clinical studies into a meta-analyses with a statistical calculus has been assumed to be a more definitive way of deciding of efficacy.</p> <p>Methods</p> <p>We simulate the therapeutic effects as measured with additive scales in patient cohorts with different disease severity and assess the limitations of an effect size calculation of additive scales which are proven mathematically.</p> <p>Results</p> <p>We demonstrate that the major problem, which cannot be overcome by current numerical methods, is the complex nature and neurobiological foundation of clinical psychiatric endpoints in particular and additive scales in general. This is particularly relevant for endpoints used in dementia research. 'Cognition' is composed of functions such as memory, attention, orientation and many more. These individual functions decline in varied and non-linear ways. Here we demonstrate that with progressive diseases cumulative values from multidimensional scales are subject to distortion by the limitations of the additive scale. The non-linearity of the decline of function impedes the calculation of effect sizes based on cumulative values from these multidimensional scales.</p> <p>Conclusions</p> <p>Statistical analysis needs to be guided by boundaries of the biological condition. Alternatively, we suggest a different approach avoiding the error imposed by over-analysis of cumulative global scores from additive scales.</p

    Modeling screening, prevention, and delaying of Alzheimer's disease: an early-stage decision analytic model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer's Disease (AD) affects a growing proportion of the population each year. Novel therapies on the horizon may slow the progress of AD symptoms and avoid cases altogether. Initiating treatment for the underlying pathology of AD would ideally be based on biomarker screening tools identifying pre-symptomatic individuals. Early-stage modeling provides estimates of potential outcomes and informs policy development.</p> <p>Methods</p> <p>A time-to-event (TTE) simulation provided estimates of screening asymptomatic patients in the general population age ≥55 and treatment impact on the number of patients reaching AD. Patients were followed from AD screen until all-cause death. Baseline sensitivity and specificity were 0.87 and 0.78, with treatment on positive screen. Treatment slowed progression by 50%. Events were scheduled using literature-based age-dependent incidences of AD and death.</p> <p>Results</p> <p>The base case results indicated increased AD free years (AD-FYs) through delays in onset and a reduction of 20 AD cases per 1000 screened individuals. Patients completely avoiding AD accounted for 61% of the incremental AD-FYs gained. Total years of treatment per 1000 screened patients was 2,611. The number-needed-to-screen was 51 and the number-needed-to-treat was 12 to avoid one case of AD. One-way sensitivity analysis indicated that duration of screening sensitivity and rescreen interval impact AD-FYs the most. A two-way sensitivity analysis found that for a test with an extended duration of sensitivity (15 years) the number of AD cases avoided was 6,000-7,000 cases for a test with higher sensitivity and specificity (0.90,0.90).</p> <p>Conclusions</p> <p>This study yielded valuable parameter range estimates at an early stage in the study of screening for AD. Analysis identified duration of screening sensitivity as a key variable that may be unavailable from clinical trials.</p
    corecore