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Abstract 

By analysing the positions of individual unit 
cells in the image of a distorted macromolecular 
crystal, it is possible to achieve considerably more 
than is achieved by the correlation averaging or 
unbending now widely practised. It is possible partly 
to compensate for individual molecular distortion; 
and it is possible to identify molecules in equivalent 
environments (which can be expected to be in 
equivalent states of strain), selective averaging of 
which yields images that show how strain is 
accommodated at the sub-molecular level. The 
possible presence of surface forces applied to the 
crystal by its support film complicates the analysis 
and adds two additional parameters, not previously 
identified, to those necessary to characterise the 
environment of each molecule fully; these surface 
stress parameters can be estimated on the basis of a 
simple (isotropic) model of the elastic behaviour of a 
2-D crystal. The appropriate mathematical 
description of strain and elasticity in 2-D crystals has 
been assembled concisely, and a set of new 
procedures developed allowing their practical 
exploitation within the Semper image processing 
system. 

Key words: image averaging, correlation 
averaging, molecular distortion, strain, elasticity, 
unbending, surface stress, lattice fitting, gradient 
estimation. 
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1 Introduction 

This paper has the following purposes: (a) to 
explain the principles of distortion characterisation 
and compensation in more detail than has been given 
previously; (b) to describe how these have been 
implemented in a Semper system (Saxton et al., 
1979); ( c) to present an analysis of the elastic 
behaviour of 2-D sheets in general; and in the light of 
this (d) to show how the stress at the crystal surface 
can be calculated. 

The substantial information is presented in a 
series of appendices, while the main body of the text 
outlines their purpose and significance in the context 
of the complete process. It is hoped that describing 
the distortion characteristion and compensation 
processes in the context of a specific implementation 
will ensure an account sufficiently detailed for others 
to implement them independently, and provide useful 
supplementary information for anyone wanting to 
use the Semper code (available on request); there is 
perhaps also some modest didactic value in showing 
what can be written simply at a high level, as library 
programs of Semper commands (commonly called 
macros in other systems) and what must be written at 
a lower level, e.g. as Fortran. 

Figure 1 illustrates what is simultaneously the 
problem and the opportunity, in the form of an image 
of a surface layer crystal from Pyrobaculum 
islandicum (Phipps et al., 1990) in which gross 
distortions are immediately evident. The basic 
process of averaging with local distortion 
compensation can be summarised in five stages, each 
of which is considered in more detail in tum below: 

o the observation of the distorted positions of all 
unit cells in the crystal, via conventional cross 
correlation of a reference with the distorted 
image; 

o the indexation of these positions in terms of the 
crystal base vectors 
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Fig.I Micrograph of highly distorted P.islandicum crystal (Phipps et al., 1990). 

o the analysis of the distortions, with statistical and 
graphical display of the resulting parameters; 

o selection of positions to be averaged, on the basis 
of distortion parameters or otherwise; 

o averaging of subregions with local 
compensation of distortion. 

Small superscript numerals refer to notes at the end 
of the paper. 

2. Observing the Distortion Function. 

It does not seem worth reiterating here any 
details of the initial correlation-averaging process 
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that provides observations of the actual positions at 
which most unit cells of the distorted crystal are to be 
found; the procedure has been described before (e.g. 
Saxton & Baumeister, 1982, Frank, 1982). 

It is worth reiterating however that the accuracy 
of the displacement measurements thus obtained is 
crucial to the value of any subsequent distortion 
analysis, since the distortion parameters are all based 
on estimating derivatives of the displacement field -
and the method proposed here for estimating the 
surface forces between crystal and support film in 
fact involves differentiating it a second time. Care 
should be taken to ensure the maximum possible 
accuracy at this stage - by using an initial average as a 
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reference in a second refinement correlation process, 
by ensuring that the reference is no larger than it 
needs to be, and by devoting some effort to the 
process of estimating peak positions in the correlation 
function. 

We assume here then that the distorted position 
data have already been obtained. They are stored by 
Semper in a relatively loosely defined 'picture' class 
called a position list, which consists of a multi-layer 
array in which corresponding pixels in different 
layers hold different parameters about a single 
position. The first two layers almost always hold an 
x- and y-coordinate, but the contents of subsequent 
layers vary widely: the correlation process normally 
stores correlation peak weights (the highest single 
point, or a locally integrated value) in a third layer; 
in the context of image analysis, object areas or 
perimeters may be stored in the other layers, and in 
the present context, parameters such as local rotation 
and magnification. The order of positions within 
each layer may or may not have any geometrical 
significance. 

Some useful before indexing is effected. The list 
may be displayed in the form of a small cross at each 
listed site, and any spurious positions marked 
individually with a cursor or drawn round as a group 
deleted. It is not necessary however to remove 
positions that are well off the local lattice, as this 
form of pruning subsequently happens automatically; 
its value is in removing any large sets of positions 
outside the crystal area. New Fortran code providing 
a command PLDELETE has been provided for such 
purposes (Appendix G). 

2.2 Indexing the positions listed 
To determine the original position, before 

distortion, of each of the positions listed, we rely on 
the knowledge that each must be a site of the original 
crystal lattice, so that it is sufficient to know the 
lattice parameters and the indices of each position. 
Indexation is in fact one of the more difficult steps to 
automate reliably, especially in the presence of tears 
and/or tucks in the layer that move individual cells by 
many lattice constants from their original positions. 
The procedure described here relies on a reasonably 
convenient form of manual guidance around such 
problem areas; it is implemented entirely by Semper 
library programs. 

An initial rough estimate is required of the 
lattice base vectors; this is found with quite sufficient 
accuracy by marking an origin and any two nearby 
independent sites, using a standard library program 
LATTICE. The user is asked to index these two sites 
directly, at which point the choice is made amongst 
alternative possible base vector pairs. 

Thereafter, the list is indexed incrementally, in a 
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series of overlapping regions each small enough to 
prevent mis-indexation internally, with the 
information accumulated from region to region in 
turn. The user is invited to outline a region with the 
cursor; within this the lattice base vectors a and b, 
and the position of its origin c, are adjusted to match 
the observed positions of lattice sites using a least­
squares criterion as explained in Appendix D; a list of 
positions reasonably close to lattice sites (i.e. those 
whose lattice indices are nearly integral) is made, and 
the positions retained marked in a distinctive form on 
the display for the user's approval before being added 
to a cumulative list of positions retained for 
subsequent output in revised form. 

The structure in which the retained positions are 
accumulated is a three layer position list, which we 
may call the index-ordered list; the three layers hold 
an x- and y-coordinate for a position, and the position 
weight (ia any. The layers are two-dimensional, with 
the point whose coordinates are h,k referring to the 
lattice site with those indices - so that the structure 
can be regarded as a table of actual position and 
weight against lattice indices. The layers are created 
large enough to accommodate the largest indices 
anywhere in the crystal - commonly a fixed size of 
100 points square is used. The entire structure is 
initialised to a large number (106) which thereafter 
serves as a flag to indicate a site for which no 
information is available. The process of adding to 
this index-ordered list the positions retained for one 
fitted subregion involves deducing the indices of each 
position in tum (by calculating its indices rounded to 
the nearest integers), and storing its coordinates and 
weight at the point they indicate. The smallest and 
largest indices used in each direction are accumulated 
during this process also, for use in subsequent steps. 

The general purpose of the index-ordered list is 
to provide an efficient way of locating a lattice site 
with given indices; its immediate purpose is the 
avoidance of duplication of sites in the final list, and 
other uses are described later as they arise. 

For each region after the first, the user is asked 
to mark a link point within the region but already 
indexed; this serves as the reference point for the 
extension of indices into the new region. Since the 
lattice parameters are re-fitted to each region in tum, 
crystal distortions are normally followed without 
difficulty even when cumulatively large; on the 
occasions when it is necessary to move 
discontinuously to a new region where the local 
lattice is very different, the current lattice parameters 
must be reinitialised via the program LATTICE. When 
indexing is complete, the accumulated list is output as 
a five layer indexed list, in which the five layers hold 
the position coordinates, its weight (if any) and its 
two lattice indices. 
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Fig.2 Distorted lattice for crystal shown in Fig. I, 
after indexation. 

While the detailed description just given may 
appear complex, the process appears simple to the 
user, who merely runs a program INDPL to initialise 
the process, then INDPLADD for each region to be 
added in turn, and finally INDPLOUT to dump the 
results. 

The index-ordered list allows two subsidiary 
programs to be used if desired to check the self­
consistency of the indexing: INDPLTEST examines the 
neighbours of all listed sites and reports any for 
which the actual position recorded differs from that 
at the site itself by an amount that differs greatly 
from the appropriate lattice vector - though this 
criterion would be unsatisfactory if really large 
rotations were present; and INDPLMARK marks lines 
on the display joining the actual position of each listed 
site to those of its positive neighbours, which makes 
any misindexing at once visually obvious. 

The indexation is illustrated in Fig.2, which 
shows the distorted crystal lattice, displayed as just 
described, for the layer shown in Fig. I 

Whenever the user indicates a position with the 
cursor, e.g. as a link point, the complete list must be 
searched for the nearest position to the point 
indicated so that the appropriate rounding can be 
performed; new Fortran code now provides a 
command PLFIND for performing this search quickly 
(Appendix G). 
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2.3 Analysing the distortion function 
The mathematical description of the distortion 

process, and how the observed distortion field can be 
analysed in principle to provide values f~r the local 
crystal rotation, magnification and elongat10n are set 
out in full in Appendix A. 

To obtain such a description of each lattice site 
in the distorted crystal, the first step is to obtain for 
each site in the indexed list an estimate of either the 
deformation tensor D or the displacement tensor U 
described in the appendix; the present code finds the 
latter, i.e. the four derivatives formed by the rates of 
change of horizontal and vertical displacement 
components, each in both horizontal and vertical 
directions. 

For each listed site, the list is searched for any 
neighbouring sites - currently taken to be those sites 
for which the indices differ from those of the target 
site by no more than one without both being identical 
wiih those of the target site, though this is not entirely 
satisfactory; a separate list is made of all such 
neighbouring sites, with their displacement 
differences between neighbour and target, and the 
original position differences between them. The 
original positions are of course all sites of the 
original ideal lattice, and their generation fro~ the 
stored indices requires a decision as to what the ideal 
lattice parameters should have been; initially the 
estimates at the end of the indexing process can be 
used, as they are refined in a subsequent step. 

The value of U can be fitted to the data in the 
neighbour list following any of the three procedures 
described in Appendix B; the present code (a Fortran 
module FITUIJ) uses the simplest only, and discards 
any sites that have less than two neighbours. 

The resulting displacement tensor is then 
analysed by a separate Fortran module PSC2D into a 
local rotation[!] , an isotropic magnification, and an 
area-preserving elongation - magnification in one 
direction (the elongation direction) with 
simultaneous demagnification by the same factor at 
90°. When each listed position has been analysed, a 
revised list is output containing the original five 
layers, four more containi~g the disto~t~on 
parameters just calculated, and five more contammg 
other useful but inessential information: the original 
position coordinates of each site, its displacement 
components, and a serial number to identify it 
through any subsequent re-ordering or sorting 
processes. The resulting fourteen layer position list 
may be called an analysed list. 

Once again, the process appears extremely 
simple as well as rapid to the user, who merely 
assigns initial values to the lattice parameters and 
makes one use of a new Fortran-coded command 
PLANAL YSE (Appendix G). 
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2.4 Examining the distortion parameters 
Statistics can be obtained easily about the 

resulting parameters simply by examining the 
appropriate layers of the analysed list. The standard 
facilities of Semper are perfectly adequate for the 
purpose, allowing the generation of histograms as 
well as the calculation of means, standard deviations, 
and modal values. The definition of suitable Semper 
macros relieves the user from having to know or 
remember actual layer numbers: for example,.one 
types HISTOGRAM @MAGN rather than HISTOGRAM 
LAYER 11). 

It is usually convenient at this stage to adjust the 
parameters used to describe the original ideal lattice. 
If the crystal is known to have p3, p4 or p6 symmetry 
on biochemical grounds, then the original lattice 
assumed should certainly have this symmetry, with 
any departure from it implying distortion[2] , so any 
analysis should be made with b forced to be 60° , 
90°or 120° anticlockwise from a as appropriate. 
After a first analysis, it is convenient (though 
certainly not essential) to adjust the original lattice 
parameters so that the mean magnification after 
analysis is unity and the mean rotation is zero; this is 
achieved by multiplying the base vectors first used by 
the mean magnification reported, rotating them 
anticlockwise by the reported mean rotation, and then 
repeating the distortion analysis with PLANAL YSE. 

There are many ways in which the distortion 
parameters could be displayed graphically. Some 
parameters, are simple conceptually: the local 
displacement, for example, can be visualised as short 
arrows from each original site to the actual position 
(Fig.3), with lengths exaggerated if necessary, and 
the rotations by small fixed length lines at each site 
rotated appropriately. Others are less easily 
presented; we have found it useful to convey one 
particular pair simultaneously by placing small 
squares at each site, oriented so that their sides lie 
along the elongation direction, and distorted into the 
appropriate rectangles by the combined effects of 
magnification and elongation (also shown in Fig.3). 
Some Fortran code was written to provide a special 
command PLMARK for marking distortion 
parameters on the display (Appendix G). 

2.5 Selecting positions to average 
One way of using the distortion information is 

in the production of an average in which all the unit 
cells in the crystal are superimposed with the local 
distortions compensated. That this can achieve 
substantially improved resolution for badly distorted 
crystals is clear (see for example Fig.5 below); the 
compensation can only be complete however if the 
entire contents of the unit cell distort uniformly (the 
rubber-sheet model), and while at least one good 
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Fig.3 Above: displacement vectors for crystal shown 
in Fig. I, without exaggeration (i.e. at unit 
magnification). Below: magnification / elongation 
pattern, exaggerated five-fold. 

example of such behaviour has been reported it is 
more likely in general that the strain will be 
distributed unequally over different features within 
the unit cells - some parts being more labile than 
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Fig.4 Resampling grids (solid lines) used in extracting_regions fo: averaging _in three :Yays from a distorted 
crystal lattice (broken lines). (a) conventional correlauon averagmg, corre_ctmg _for ~1splacement only; (?) 
constant distortion parameters over the region extracted; (c) locally varymg d1stort10n parameters - gnd 
obtained by bilinear interpolation of the observed displacements. 

others, for example, as reported by Saxton et al., 
1991. 

In these circumstances, it should be preferable to 
average only molecules in similar environments - and 
this is the real justification of all the effort devoted to 
analysing the distortions, which is unnecessary if the 
sole object is the production of distortion­
compensated averages. With seriously distorted 
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crystals, such an approach can be viewed entirely 
positively: clear averages of molecules in various 
states of substantial but known strain should show 
how the individual parts of the unit cell respond to the 
strain, providing information not otherwise available 
on the architecture of the crystal as a working layer -
the curvature of bacterial surface layers for example 
alone implies substantial strain levels in vivo (several 
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Fig.5 Averages made in three different ways of the most highly distorted region only of the crystal in Fig. I 
(the region half way down the right hand side), containing about a quarter of the total unit cells; the three 
averages correspond to the three different resampling patterns shown in Fig.4. 

per cent). 
Selective averaging - which may be on other 

bases besides the distortion parameters - is of course 
the main reason why local averaging methods are 
generally to be preferred to complete lattice 
unbending and conventional Fourier filtration or 
transform peak profile fitting. 

Two new Fortran-coded commands have been 
provided as tools for position selection, PLSORT and 
PLDELETE (Appendix G). The former simply 
reorders all the positions in a list, and all their 
associated parameters, so that any one chosen 
parameter is sorted into ascending or descending 
order; thus an average over the fifty least elongated 
regions (loosely, those with lowest shear strains) can 
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be achieved by sorting the list with respect to the 
elongation and then averaging the first fifty points 
listed. The latter command, PLDELETE, provides a 
variety of mechanisms for selective deletion of 
positions from a list, from individual positions, 
groups within or outside indicated regions, and most 
usefully positions for which the parameters meet or 
satisfy some algebraic criterion. It is one of the 
felicitous results of the otherwise often frustrating 
way in which Semper handles text strings that 
facilities such as 

PLDELETE IF MAG<.97 I MAG> 1.03 I MOD(ROT)>.03 

(i.e. "delete position if magnification factor is less 
than 0.97, if magnification is greater than 1.03, or if 
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the magnitude of the local rotation exceeds 0.03 rad") 
can be provided without any significant 
programming effort within the code implementing 
PLDELETE. In this way, it is simple to make separate 
lists of positions highly elongated in two different 
directions, or other similarly selective lists. 

2.6 Effecting an average with local 
distortion compensation 

In conventional correlation averaging, the only 
form of distortion compensated is the local 
displacement. Recent measurements for a variety of 
different specimens (Saxton et al., 1991) have 
confirmed that this is invariably the most serious in 
its effect on resolution when it is left uncorrected; 
displacements accumulate from unit cell to unit cell 
across the crystal, but once this is corrected features 
at the centre of the unit cells averaged are correctly 
registered regardless of the remaining forms of 
distortion present, and misregistration arises only in 
proportion to distance from the centre of the field 
averaged. 

There seems little reason to average with any 
level of compensation intermediate between 
compensating for the displacement only, as in 
conventional correlation averaging, and 
compensating for all forms of distortion - for 
example, compensating for rotation as well without 
compensating for magnification and elongation, even 
though rotation is not uncommonly the next most 
serious form of distortion after local displacement. 
There are two ways in which a fuller degree of 
compensation can be incorporated easily in averages 
given the form of data analysis so far described. In 
the first, the distortion parameters are treated as 
constant throughout each region averaged: for each 
site listed, a re-sampling grid is determined either 
from the deformation tensor or from the distortion 
parameters deduced from it, as described in detail in 
Appendix C, a distortion-compensated region is 
extracted from the original picture on this grid, and 
the result is added to those already accumulated. The 
resampling grid is entirely specified by an origin and 
a pair of re-sampling lattice vectors (cf. Appendix 
C), and new Fortran code providing a command 
PLUVXY has been provided to recover these from the 
analysed position list (Appendix G). 

The alternative approach is to use simple 
bilinear interpolation of the positions at which the 
distorted lattice sites were found to provide the 
necessary resampling grid; this allows the distortion 
parameters to vary within the regions averaged, and 
achieves a slightly better final result at relatively 
large distances from the centre of the field averaged. 
The interpolation can be achieved conveniently by 
exploiting the index-ordered list, reconstructed if 
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necessary for the present purpose: the first two layers 
of this provide the x- and y-coordinates for the 
distorted lattice sites, tabulated in index order, so that 
interpolating each layer finely in tum provides the 
re-sampling grid needed to recover distortion­
compensated regions sampled on a lattice-relative 
grid (i.e. one with base axes parallel to the lattice base 
vectors); a single final re-interpolation of the average 
is needed to restore normal cartesian sampling. A 
drawback to the approach is that any sites with 
missing neighbours cannot be included in the 
average. 

Figure 4 shows the re-sampling grids used in the 
two approaches, together with one equivalent to what 
is achieved by conventional correlation averaging; 
Fig.5 shows averages of the surface layer in Fig.1 
made in each of the three ways, with successive 
improvment evident at each stage; these are taken 
from Saxton et al. (1991). The user normally uses a 
Semper program to effect the averaging; all that is 
actually necessary however is a simple loop such as 
the following: 

FOR N=0,100 
PLUVXY 2 NUMBER N 
EXTRACT I TO 3 @UVXY SIZE 80 
CALCULATE :4+:3 

LOOP 

which adds to picture 4 compensated regions around 
the first 100 positions of picture 1 listed in the plist 2 

Although they are not provided for in the 
Semper code described here, two alternative 
approaches to the production of distortion­
compensated averages should be mentioned. In both, 
the strategy is simply the interpolation of the 
observed unit cell displacements, with no distortion 
characterisation. Henderson et al. (1986) use a 
standard subroutine (from the NAG library) to fit 
bicubic splines to the displacement data; this effects 
some smoothing (which may or may not be desirable 
according to how noisy the data are), and interpolates 
values at unlisted sites; the process is unstable 
however where large gaps in the data exist, or where 
relatively accurate data demand close fitting with a 
large number of knots. Durr et al. (1989) adopt a 
different approach, tabulating displacement values 
finely and adjusting them to minimise an estimate of 
the elastic deformation energy in the crystal subject 
to their matching the data available; this is very 
reliable in both interpolating and extrapolating the 
data in a physically realistic fashion. 

Examples obtained using the above techniques of 
images of two bacterial surface layers, each in two 
different known high strain states, are given by 
Saxton et al. (1991). 
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3 External Stress at the Surface of a Crystal 

The analysis presented above of the state of 
strain in a 2-D crystal; though it has already proved 
useful in allowing averages to be obtained in distinct 
known states of high strain, it is in fact an incomplete 
characterisation of the environment of a unit cell, if 
our purpose is to ensure that all unit cells averaged 
are (statistically at least) in identical configurations. 

The factor remaining to be considered is the 
presence or otherwise of tangential forces applied to 
the crystal at its interface with the support film, as 
illustrated in Fig.6. Since they are applied 
asymmetrically - at the top or the bottom of the layer 
- any such forces are likely to encourage molecular 
subunits to tilt in an way not promoted by the in-plane 
forces associated with the strains we have considered 
so far. In fact, it proves possible to obtain good 
estimates of these surface stresses also from the strain 
fields already deduced. 

To calculate the surface stress, we need first to 
know the relationship between stresses and strains in 
a 2-D crystal; these are summarised in Appendix E 
for general, p4 and isotropic sheets. The appendix 
shows that in the general case there are six 
independent elastic constants (stiffness coefficients) 
for a 2-D sheet; that a sheet with p4 symmetry has 
only 4 - but that is more than the seemingly analogous 
case of a cubic crystal in 3-D; and that an isotropic 
sheet in 2-D has only two, as in 3-D. The last case is 
tractable as a model, and Appendix Fuses it to deduce 
the stress in a crystal from the strain with only one 
unknown multiplicative constant. The force applied 
to the surface of an element of the crystal is calculated 
from the difference in the in-plane stresses acting at 
opposite edges; the final expression for the surface 
stress involves both x- and y-derivatives of the three 
independent strain components. 

Given this model, it is not difficult to 
supplement the strain parameters so far obtained by 
two more: the x- and y-components of the surface 
stress, and further Fortran code has been written 
recently to provide a new command PLXTRA for the 
purpose. The various derivatives are obtained in 
much the same way as the displacement derivatives 
(§2.3): the strain tensor for each site is recovered 
from the stored distortion parameters; the 
neighbours for each site are found, and the best­
fitting value for the derivative of the three 
components is found as in Appendix B, after which 
the force is obtained directly from (F4 ). Figure 7 
shows the surface stress field thus found for the P. 
islandicum crystal used in the earlier figures, 
displayed in the form of short vectors proportional to 
the local stress vector. Large stresses are found at 
some parts of the crystal periphery, making it 
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◄ :.... .... 
Fig.6 Surface stress on a crystal at the lower surface, 
where it is supposed to rest on a support film. Top: 
the unstressed crystal; second line: the crystal under 
tension, but without tension variations from one side 
to the other; third line: the crystal with the same mean 
tensile stress, but with a larger stress at the right; 
bottom: the same with the stress gradient reversed. 
In the last two cases, the imbalance in the forces at the 
side must be made up by forces at the lower surface, 
which distort the crystal in different ways as shown. 

impossible simultaneously to show the stress clearly 
throughout the interior; the lower part of the figure 
accordingly shows the stress vectors enlarged 
further with the larger peripheral stresses 
suppressed. A reasonably smooth pattern of surface 
stress variations is discernible; for example, most 
unit cells near the highly distorted region half way 
down the right edge of the crystal are systematically 
driven towards the centre of this region by the 
surface forces. Selective averages allowing for 
variations in surface as well as internal stresses are 
expected to be the subject of later reports. 

The results above are both welcome and 
unwelcome for different reasons. It can only be 
welcomed that a further factor significantly affecting 
the configuration of individual unit cells can be 
deduced from the observed strain fields; on the other 
hand, it is disappointing that there should be any such 
factor, especially one with two components, as there 
are already a rather large number of factors that must 
be similar before unit cells can safely be combined in 
an average with a high resolution target: the local 
displacement and rotation can be ignored, but 
magnification and elongation are both significant, 
quite apart from differences due to more familiar 
causes such as variations in stain level. It remains to 
be established where the most effective trade-off is to 
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Fig.7 The surface stress field observed for the 
crystal in Fig. I, shown to an arbitrary scale. Above: 
stress at all recorded sites, showing relatively large 
values near the periphery; below: peripheral sites 
excluded, and stress vectors further magnified 
threefold. 
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be made between resolution loss due to inadequate 
characterisation and consequent misregistration, and 
high noise levels because too few unit cells have been 
averaged. 
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Appendix A: Analysis of Finite Deformations 
in 2-D 

A.I Textbooks on elasticity theory or continuum 
mechanics abound, but deal almost entirely with 3-D 
materials and most commonly with infinitesimal 
displacements. Those by Billington & Tate (1981 ), 
Segel & Handelman (1977) and Spencer (1980) are 
useful in the present context. This appendix sets out 
how finite distortions are analysed in 2-D (see also 
Durr, 1991); appendices E and F below deals with 2-
D elasticity theory, where there are some significant 
differences from the standard 3-D case. 

We suppose that a point of the 2-D medium 
originally at r = (x,y) is displaced to r' = (x',y'), 
which we treat as a function of x and y - the 
Lagrangian formulation - and may call the distortion 
function. The difference between these, u = ( v, w) = 
r' - r, we call the displacement field. Any small 
vector or in the original medium becomes or' in the 

foll(;~y iJng=lin[cri: J (ox] = [ l + :: t J (ox] 

u ay' ~ oy aw l+aw oy 
ax ay ax ay 

. . arj' aui . (Al) 
Defmmg dij = T and Uij = ~ , this may be 
rewritten, with r.\:he usual sriffix summation 
convention, 

(A2) 

D is called the deformation tensor, and U the 
displacement tensor. We now decompose the 
deformation D into a product RF, with R a 
(clockwise) rotation and F symmetric, i.e. into the 
application of a simpler deformation F followed by a 
rotation R; the decomposition is not unique without 
some such condition on F, and we shall see below why 
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this condition is useful. To find the appropriate angle 
of rotation 0, we note that F = R-1 D, i.e. 

(
fil f12 )=(cos(0) -sin(0) J(d11 d12) (A3) 
f21 f22 sin(0) cos(0) d21 d22 

our symmetry requirement f12 = f21 therefore 
requires that 

d 12cos(8) - d22sin(8) = d 11 sin(0) + d21 cos(0), 

which allows us to obtain 0 via 

Once 0 has been determined, F is obtained from 
(A3) as 

F = (cos(0)( 1+u11)-sin(8)u21 cos(0)u 12-sin(S)(l +u22) ) 

f 12 sin(0)u 12+cos(8)(1 +u22) 

(AS) 

A.2 The shape change tensor F thus obtained 
describes all forms of local distortion other than 
rotation. Its diagonal components are said to measure 
normal or tensile change and its off-diagonal 
elements shear. Being symmetric, it takes the simpler 
form 

(
f
0
1 o 1 

f2) (A6) 

where fi,f2 are its eigenvalues, if the coordinate axes 
are rotated to be parallel to its eigenvectors; it 
describes stretching by a factor f1 in the direction of 
the first eigenvector and by a factor f2 at 90° to this. 
Any deformation can thus be regarded locally as pure 
stretching in these principal directions followed by 
pure rotation. It is the simplicity of this description 
that led us to seek a symmetric F when first 
decomposing D[3] . 

We find the actual values of the principal 
magnifications f1, fi and the corresponding 
directions in the standard way, obtaining 

(A7) 

with the principal directions 

(A8) 
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anticlockwise from the pos1t1ve x axis4 It is 
convenient, though not essential, to interchange the 
principal magnifications if necessary so that fi is the 
larger, and to quote its direction a only; it also 
helpful to quote the direction after the local rotation 
has been applied too, i.e. a-0 (the rotation was 
clockwise). 

To measure strain itself, we subtract from F the 
value it has for an undistorted medium, namely unity; 
the result, E = F - I, i.e. eij = fij - Oij, is called the 
strain tensor. The principal directions of this are 
identical with those of E; its eigenvalues differ only 
in having the one subtracted, i.e. e1,2 = fi,2 - 1, and 
are called the principal strain components. 

The stretching by f1 and f2 in two mutually 
perpendicular directions can obviously be rephrased 
in several ways. One such is as th~oduct of an 
isotropic magnification by a factor'\/ fi f2 - the same 
in both directions - and an ap.is_Qtropic magnification, 
or elongation by a factor"\/ f1/f2 - magnification in 
one direction with simultaneous demagnification in 
the other; the former changes area without changing 
shape, and the latter changes shape without changing 
area; both parameters are linear, measuring factors 
by which distances change as a result of the 
distortion. Other factors that could be used include 
the area magnification (the factor by which areas 
change) f1f2, the area strain (the fractional frea 
change) f 1 f2-l, and the maximum shear strain 15:(f 1 -
f2)I 5. For low strain levels, the elongation 
approximates the maximum shear strain. [The term 
stretch, which suggested itself first for what is here 
called elongation, has been pre-empted to mean the 
ratio of distorted to undistorted lengths for small line 
elements in the medium. Terminology is however 
confused in the literature, and both of the terms 
stretch and elongation are also widely employed in 
loose senses.] 

We chose above to decompose D into a 
deformation followed by a rotation; it is helpful to 
note that the opposite choice leads to no significant 
difference in the later analysis. If Dis written as FR 
instead, then the fact that FR = RF means that F is 
simply RFR-1, i.e. F with respect to rotated axes, 
giving the same principal directions as before with 
respect to the medium itself. 

A.3 For completeness, we note that there exist two 
invariants of the tensor F - invariants in the sense that 
they are unchanged by rotation of the coordinate axes 
- namely its trace a and its determinant [3; by 
evaluating with axes along the principal directions, 
we can easily relate these to fi,2: 



W.O. Saxton 

which thus provides an alternative route to finding 
the principal magnifications if the orientation of the 
principal axes is not required. 

In the same spirit, we note a route to the 
principal magnifications that evades the removal of 
the rotation R entirely. According to (A2), the scalar 
product between two small vectors 8ri and 8r2 in the 
original medium becomes on distortion 

(AlO) 

if we define Cjk = dijdik, i.e. C = DTD. Any pure 
rotation preserves the lengths of and angles between 
such vectors as 8ri and 8r2, and so preserves the 
scalar product; according to (A3) however, that is 
preserved for arbitrary 8r 1 and 8r2 however only if 
Cij = 6ij, i.e. if C = I. The departure of C from unity 
thus provides an alternative way of measuring 
distortions other than rotations, and its eigenvalues 
prove to be simply fi 2 and f22. Since D = RF, its 
transpose DT is fTRT, so that DTD = fTRTRF = fTF 
(since R is a rotation and its transpose equals its 
inverse). If we use as a coordinate basis the 
eigenvectors of F then, F has the form (A6) and FT is 
identical, so that Chas the form 

which reveals its eigenvalues at once. Calculation of 
C and its eigenvalues, via expression equivalent to 
those of (A 7 ,A8), provide a convenient way of 
evading the factorisation of the rotation. It is 
insufficient however for our present purposes, for 
which the rotation and the orientation information is 
also required. 

A.4 It is useful finally to note the simplifications 
that occur if displacements are assumed small - as is 
commonly the case in engineering applications of 
elasticity theory - since use is made of the resulting 
expressions in Appendix E. D = RF becomes I+U = 
(I+A) (I+S) with small antisymmetric A and small 
symmetric S, or simply I+ A + S to first order. A is 
then the antisymmetric part of U, and S the 
symmetric part: 

1 
Sij = 3:(Uij+Uji); 

the local rotation is 

and the strain components are 

(All) 
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Appendix B: Determination of Function 
Gradients 

B.1 This appendix gives the tedious details of how 
the vector gradient of a scalar function can be 
estimated from a variable number of function 
samples irregularly positioned around the point of 
interest. Three successively more sophisticated 
fitting methods are given; vector fields are addressed 
by applying any one procedure to each component in 
turn. 

We suppose the function value observed, with 
noise, at the point at which the derivatives are 
required - the target point -and also at a set of points 
with position vectors ri relative to this. In the 
simplest approach, which needs a minimum of two 
neighbouring points only, we convert the observed 
function values into a set of increments t:,. Vi = v(ri)­
v(O) from the observed target point value and model 
these by a linear ramp function: 

fi = Cx Xi + Cy Yi- (Bl) 

The coefficients Cx and Cy are chosen so as to 
minimise the summed squared deviation 

s = Li ( !::,.vi-fi )2 = Li ( !::,.vj-CxXi-CyYi)2 . 

The minimisation equations are 

[
:ix]= 0 ⇒ l L,iXi

2 
L,iXiYi lex)= (Lixi!::,.ViJ 

els "'-x-y· "'y-2 c L - L,1 l l L.,1 l Y -y-AV. dC \ 10 I 
y 

(B2) 
which are readily solved analytically. The vector 
(cx,Cy) - here and subsequently - is the required 
gradient. 

B.2 While satisfactory if noise levels are low, this 
first approach in fact gives disproportionate weight 
to the target point itself, since the fitted function is 
forced to match the observed value there exactly. 
This weakness can be eliminated by fitting the 
function v itself, rather than incremental values, 
using a general bilinear function: 

fi = C + CxXi + CyYi• (B3) 

The coefficients c, ex and cy are chosen to minimise 

which leads to a set of three equations 
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where S denotes L,iXimYin and Vmn denotes 
L,iViXimYin, which are readily enough solved for Cx 
and cy as part of a computer program. If no more 
than two neighbouring samples are available, this 
simply gives the same result as (B2). 

If four or more neighbouring samples are 
available, a better result still may be obtained by 
fitting a bi-quadratic function: 

fi = C + CxXi + CyYi + Cxxx2 + CxyXY + Cyyy2. (BS) 

The minimisation equations for this case are 

Soo S10 Soi S20 S11 S02 C 00 
S10 S20 S11 S30 S21 S12 Cx V10 
Soi S11 S02 S21 S12 S03 Cy Vo1 

(B6) 
S20 S30 S31 S40 S31 S22 Cxx V20 
S1 I S21 S12 S31 S22 S13 Cxy V11 
So2 S12 So3 S22 S13 S04 Cyy Vo2 

with the same notation as before. This estimate 
follows local curvature; if the noise levels are high, it 
may be less desirable because it effects a lower degree 
of data smoothing. 

Appendix C: Obtaining Compensating Re­
sampling Grids 

This appendix sets out how a re-sampling grid is 
determined that restores the region around a point 
with given distortion parameters to its original shape 
and orientation. 

We want to know in effect into what the vectors 
a = (1 ,Q) and b = (0, 1) in the original crystal are 
transformed by the local deformation matrix D, since 
these define the increments at which the undistorted 
crystal would have been sampled. These are 

, (D11 D12 )(1) (DI I) 
a = D21 D22 0 =lD21 

and 

, (DJJ D12 )(0) (D12) 
b = D21 D22 1 =lD22 (Cl) 

according to (Al) or (A2). If the matrix D is 
retained in its original form, no further effort is 
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necessary to recover the corrective sampling grid. 
If D has been analysed as in appendix A into 

parameters 0, fi, f2 and a. however, it needs to be 
recovered from these. The second stage of distortion 
involves independent magnification of the medium by 
f 1 at polar angle a. and by f2 at 90° to this direction. 
This is described by a matrix 

relative to axes with those orientations, and so by 
LcxFL&., i.e. LcxFLcx, relative to the original axes, 
where Lex describes an anticlockwise rotation of axes 
by a.. This operation is preceded by a clockwise 
rotation of the medium by 0 however, described by 
Le, so that D = LcxFLcxL0 = LcxFLcx-8, i.e. 

D = ( cos(cx) -sin(cx) y ft O x cos(cx-8) sin(cx-8) j 
sm(cx) cos(cx) A O f2 -sm(cx-8) cos(a-8) 

Multiplying out the three matrices we thus obtain 

a'= [ficos(a.)cos(a-0)+fisin(a.)sin(a-0) J 
fi sin( a.)cos( a.-0)-f2cos( a.)sin( a.-0) 

and 

[
ft cos( a.)sin(a.-0)-f2sin(a.)cos( a.-0) J 

b'= 
f 1 sin( a.)sin( a.-0)-f2cos( a.)cos( a.-0) · 

Appendix D: Least-Squares Lattice 
Parameter Determination 

(C2) 

(C3) 

To determine the lattice base vectors a, b, and 
origin c best fitting a set of observed lattice positions 
ri with known indices (hi,ki), we can choose them to 
minimise the summed squared deviation function 

s = I, i lq - hia - kib - c I 2 (Dl) 

= Li { (xi-hia1-kib1-ci) 2 + (yi-hia2-kib2-c2) 2}. 

It is sufficient to solve the minimisation for one 
of the two sums, since they involve entirely 
independent coefficients. The first leads to 
minin1isation equations 

as 
aa1 
as 

ab1 
as 
aci 
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ox 

is220x 
Fig.El Forces acting on the edges of an infinitesimal 
element 8x by 8y of a 2-D elastic medium. 

where shh= L,ihi2, Shk= L,ihiki, Shk= L,iki 2, Sh= Lihi, 
Sk= L,iki, S=}:,il, Xh= L,iXihi, Xk= L,iXiki and X= Li Xi, 
which are easily solved as part of a computer 
program. 

Note that indices for all lattice positions are 
needed before the minimisation can be carried out 
correctly. These are commonly obtained by 
requiring an initial estimate of the lattice vectors, and 
calculating approximate indices for each position 
from these: 

(D3) 

these can be rounded to the nearest integer to provide 
the required indices, and any positions deviating 
markedly from integral indices can be detected and 
discarded if desired. A bootstrap approach can be 
used to the fitting of large area, with the area fitted 
initially being small enough to prevent misindexing 
even with very rough estimates of the lattice 
parameters, and the result being sufficiently accurate 
to index a larger area correctly. 

Appendix E: The Elastic Behaviour of 2-D 
Crystals 

E.1 Appendix A developed the strain tensor eij which 
measures deformation as opposed to rotation of the 
medium; we have now to introduce the stress tensor 
'tij which measures the internal forces acting on small 
regions, and which is related to the strain tensor by a 
set of elastic moduli. 
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We generalise the idea of pressure or stress as 
force per unit length in the medium by writing the 
force 8f acting on the medium behind a small line 
element in the 2-D medium in the form 

(El) 

where the vector 8s is defined to lie perpendicular to 
the line element, with a modulus equal to its length. 
The tensor ratio allows 8f to have different direction 
from 8s, thus accommodating shear as well as normal 
stresses; 'tij is called the stress tensor. That 'tij is 
symmetrical is easily seen by considering the net 
torque acting on a square element of the medium with 
side 8a, which can be seen from Fig.El to be 
('t12-'t21)8a2; since the moment of inertia is 
proportional to 8a4 however, the element will have 
an infinite angular acceleration in the limit 8a➔O 
unless 't12 = 't21- 'tij thus has the general form 

[ 
'tll 't12 J. 
't12 't22 

The diagonal elements are again called normal 
or tensile components, and the off-diagonal elements 
shear components. Since the tensor is symmetric, it 
will appear diagonal (without shear components) if 
the coordinate axes are suitably oriented - parallel to 
its eigenvectors. It is not at this stage obvious 
however whether these eigenvectors coincide with 
those of the strain tensor at the same point of the 
medium. 

E.2 We can expect that for moderate levels of 
distortion at least, the crystal will obey Hooke's law, 
giving rise to a linear relationship between the stress 
and strain tensors: 

'tij = Cikjl ekl, (E2) 

in which the stiffness coefficients Cikjl form a fourth 
rank tensor with 16 components. In fact, only 6 of 
these components are independent in general, and for 
an isotropic crystal only 2; these assertions are now 
proved. 

We simplify first by rewriting the equations in 
non-tensor (Voigt) form; since 'tij and eij are 
symmetric, we write them in the form 

T = [ 'tl 't3 J E = ( e 1 e3 ) (E 3) 
't3 'tl e3 e2 

(in which the use of a single subscript does not now 
denote an eigenvalue,as it did in Appendix A), and so 
rewrite (E2) in the form 

(
'tlJ [ c11 ci2 c13 l [e1] 't2 = c21 c22 c23 e2 . 
't3 c31 c32 c33 e3 

(E4) 
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with only nine independent coefficients. We next 
consider the work or done on a small element 
(ox,oy) when a small additional displacement ou is 
effected. Considering Fig.El again, this can be seen 
to be 

or 
dV av 

= 'tll◊Y O(axox) + 'tl2◊X O(ay°Y) 

aw aw 
+ 't21◊Y ◊(ox ox)+ 't22◊XO(ayoy) 

= ('t118u11+'t128u12 

+ 't21 ou21 + 1228u22)8xoy. 

For the purpose of determining independence of 
elasticity coefficients, we can consider the special 
case of small displacements (§A.4 above) without loss 
of generality; (All) allows us to rewrite or in the 
form 

the work done per unit area oy = or/(oxoy) can thus 
be written as 

(ES) 

It follows that 

'tl = j!J_ I oy 
ae1 and 't3 = 2ae3' 

and we can then write 

In the same way, c23 = 2q2 and c12 = c21, so that the 
general form of (E4) is in fact no worse than 

(E6) 

with only six independent coefficients. 

E.3 We consider now the special case of a p4 crystal 
and show that the number of independent components 
in the stiffness matrix is only four [6] . The crystal 
symmetry implies that all components of the fourth 
rank tensor Cikjl must be unaltered when the 
coordinate axes are rotated by 90°. A rotation of 90° 
anticlockwise is described by the matrix 
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and the stiffness tensor transforms according to 

(E7) 

To make use of this, we need to note how the 
coefficients Cij of (E6) are related to the tensor 
components: from (E2) 

'tl = 'tll 
= cu ueu + cu 12e12 + c12ue21 + c1212e22 
= cu ue1 + (cu 12+ c12u)e3+ c1212e2 

so that comparison with (B6) gives 

c11=c1111; c13=cu12+c1211; c12=CJ212. 

Similarly, we find that 

c31 = c1121 = c2121; 
c32 = CJ222 = c2212; 
c33 = c1122+ c1221=c2112+ c2211; 
c21 = c2121 
c23 = c2122+ c2221 
c22 = c2222. (E8) 

On evaluating the transform (E7) [7] and using (E8), 
we find that 

c'1111 =c2222=c1111 ⇒ CJ 1 = C22; 

c:1112 = - c2221 = Cll 12} 
C 121] = - C2 l 22 = C] 211 

⇒ CJ3 = - c23; 

c'1121 = - c2212 = CJ121 ⇒ c31 = -c32. (E9) 

The remaining components lead to relations that are 
either trivial or already established. The elasticity 
equations thus have the form 

(

'tlJ ( CJl c21 2c31 l(e1l 
't2 = c21 c11 -2c31 e2 , 
't3 c31 -c31 c33 e3 

(El0) 

which has only four independent components. 

E.4 Trigonal and hexagonal crystals are obviously 
also special cases of practical interest, but have more 
rather than fewer independent elastic constants - the 
transformation (E7) is much more tedious to 
evaluate, and is not pursued further here. What is 
treated next here is the case of an isotropic sheet, 
whose elastic properties are assumed to be direction­
independent. The form of the stiffness matrix can be 
conveniently deduced in this case from the initial 
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'C11(x,y)8y 
◄ 8y 

'C12(x,y+8y)8x ... 

'C11(x+8x,y)8y ... 

8x 

Fig.Fl Forces acting on the edges of an infinitesimal 
element bx by by of a 2-D elastic medium, when the 
stress varies across the element. For clarity, only the 
x-components are shown. 

result that the most general isotropic fourth rank 
tensor is 

Cikjl = Abikbjl + µbijbkl + Vbi1bkj (El 1) 

[e.g. Jeffreys & Jeffreys, 1956]. Using (E8) we can 
thus write 

c11=c1111=A+µ+v 

and evaluating the other coefficients in the same way, 
we find that the elasticity equations take the simple 
form 

(E12) 

having only three two independent coefficients er 1 = 
A + µ + v and c21 = µ, so that the behaviour of the 
sheet is closely analogous to that of a three­
dimensional istropic medium. 

Appendix F: External Stress on a 2-D 
Medium 

F.1 One respect in which a 2-D sheet differs 
fundamentally from a 3-D medium is in the possible 
application of an external force at one or both 
surfaces of the sheet. The requirement for the sheet 
to be in equilibrium means that we can deduce what 
surface forces are present from the imbalance in 
stresses at opposite edges of an elementary area bx by 
by. Considering Fig.Fl, we can see that the internal 
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stresses within the medium exert the following net 
force F on the element 

ch11 cl112 
~ bxby + ~ bybx 

cl121 cl122 
~ bxby + ~ bybx 

The force per unit area, or stress, that must be 
being applied at the surface(s) to counterbalance this 
is accordingly f with components 

(Fl) 

The relations (E6), (ElO) or (E12) might be 
used now to provide an expression for this external 
stress in terms of the strain tensor eij- We shall adopt 
the simplest model, with the fewest elastic constants, 
since we do not know their actual values, namely 
(El 2); before we use it however, we need a 
reasonable basis for assigning relative sizes to er 1 and 
c12. 

F.2 If we invert the relations (E12), we obtain 

0 l('tlJ 0 12 (F2) 
c11+c12 13 
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By comparison with the form 

E[m{~ -r iX:~) 
in which E is the 2-D analogue of Young's modulus 
('q/e 1 when 't2 = 0), cr that of the Poisson ratio ( -e2/e 1 
when 't2 = 0), and G that of the shear modulus ('t3/e3), 
we can conclude that c12 = crc11. In the 3-D case, the 
Poisson ratio cannot exceed ½ without resulting in a 
negative bulk modulus; in 2-D however, all moduli 
remain positive provided -\<cr<l, and we may take a 
typical value to be perhaps 3. We therefore adopt the 
following final model for the stress/strain 
relationship in a 2-D crystal, with only one unknown 
parameter: 

(:~J= cu [ ½ 1\ ~ J[:~i- (F3) 
't3 0 0 ; e3 

3 

Using this, we can evaluate (Cl), obtaining 

(F4) 

The strain components e1 =e 11, e2=e22, 
e3=e 12=e21 are recovered from stored strain 
parameters simply by applying a clockwise rotation 
by a'=a-0 to the strain tensor in diagonal form, i.e. 

= ( cos(a') -sin(a') y fi 0 '{ cos(a') sin(a') J 
E sin(a') cos(a') ,.,l 0 f2 ).__ -sin(a') cos(a') 

Appendix G: New Semper Programs and 
Commands 

Beginning at the highest level, several Semper 
programs (i.e. procedures defined in terms of 
existing Semper commands only) have been provided 
to support the procedures described in this paper, of 
which the important ones are the following. 

INDPL, INDPLADD, INPLDOUT together effect the 
indexation of a position list describing lattice sites 
in a heavily distorted crystal, producing both 
index-ordered and indexed position lists from a 
raw list. 

INDPLMARK, given an index-ordered position list, 
marks the distorted lattice on a display in the form 
of a mesh of lines joining lattice sites. 
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IND PL TEST, given an index-ordered position list, 
tests the validity of the indexation by seeking and 
reporting any instances of supposedly 
neighbouring sites in inappropriate relative 
positions. 

UNBEND, given an analysed position list, produces a 
distortion-compensated average on the basis of 
constant distortion parameters across the regions 
averaged. 

BILUNBEND, given an analysed position list, 
produces a distortion-compensated average with 
distortion parameters varying bilinearly across the 
regions averaged. 

POSNVER verifies all parameters recorded for a 
given position. 

Fortran modules have been written to provide 
the following new Semper commands. 

PLANAL YSE generates 14-layer analysed position lists 
from 4/5-layer indexed lists produced the program 
INDPL, recording local rotation / deformation 
parameters for each position. 

PLDELETE deletes positions from lists in various 
alternative ways: singly; inside or outside a given 
circle, rectangle or polygon; or if the 
rotation/deformation parameters meet arbitrary 
ci:mditions specified algebraically. For example, 

XWIRES; PLDELETE@XY 
XWIRES CLOSED CURVE: PLDELETE 1 WITH 999 
PLDELETE IF ELONG > 1.02 

PLFIND searches a position list and returns the 
Semper coordinates of the position nearest a 
requested point. 

PLMARK marks position lists on the display in various 
ways: positions; original positions; displacement 
vectors; rotations; magnifications and elongation 
patterns; surface stress vectors; serial numbers; 
and positions with mark sizes varied according to 
the position weights - all for an optionally 
restricted range of position numbers and with 
optional exaggeration of the strain parameters. 
For example 

PLMARK DVECTORS TIMES 2 

PLSORT sorts position lists by any indicated layer, in 
ascending or descending order; it can also sort so 
as to order an externally supplied array, which 
allows other parameters besides those already 
stored to be calculated and used as the basis for 
sorting. 

PLSORT@MAGN DESCENDING 
PLUVXY given an analysed position list recovers 

distortion parameters for a single site indicated by 
number or approximate position, and sets 
extraction sampling variables (U,V ,X,Y) so that 
EXTRACT @UVXY recovers locally unbent regions 
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for averaging; calls PLFIND if the site is indicated 
by position rather than by number. 

PLXTRA adds a further two parameters to those 
generated by PLANALYSE, namely the x- and y­
components of the tangential force exerted at the 
crystal surface(s) per unit area - estimated via (F4) 
with ci 1 simply taken to be 1. The output contains 
16 layers. 

Finally, the following Fortran modules provide 
lower level facilities for the commands described 
above: 

FITUIJ expects data in the form of a set of displacment 
differences Llu,Llv for increments Llx,Lly from an 
initial position at which the module estimates the 
displacement derivatives by a least squares fit; 
called by PLAN ALYSE. 

PSC2D analyses displacement tensor in terms of local 
rotation, magnification, elongation (and principle 
strain components); called by PLANAL YSE. 

PLCOND condenses position lists, omitting any 
marked for deletion (i.e. with recorded x­
coordinates greater than 105 ); used by 
PLANAL YSE, PLDELETE. 

INPL YG given a closed curve definition (the x- and y­
coordinates of a series of vertices), determines 
whether a given position lies inside it or outside; 
called by PLDELETE. The basic method used to 
scan all boundary segments counting intersections 
with a horizontal line from the far left to the point 
under scrutiny. 
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Notes 

[1] The rotation is in fact reported in an anticlockwise sense, 
in contrast to that assumed in the appenclix A. 

[2] This assertion in fact holds good only if the specimen is 
untilted, of course. 

[3 Rotating by 180° obviously reverses (negates) all 
components of D, so the ambiguity of ±n in 0 left by (A4) is 
resolved below by requiring SJ to be positive. 

[ 4] The ambiguity of n this time is fundamental but trivial. 

[5] The shear strain obviously depends on the orientation of 
the coordinate axes, being zero when they lie along the 
principal directions; its maximum value is found by 
considering f 12 following a rotation and maximising w.r.t. 
the rotation angle; this proves to be ✓(}f11-f22)2+f122 ) for 
arbitrary axes, and therefore ½l(f 1 -f2)I on evaluation with 
respect to the principal axes. 

[6] The case of a cubic crystal in three climensions, which has 
only three independent components, seems equivalent at first, 
but has in fact more symmetry elements, and in particular 
rotation axes in the crystal plane as well as normal to it. 

[7] The evaluation is not in fact very tedious, since the 
vanishing of lij whenever i=j means that the only non-zero 
term in the sum is that in which all subscripts have changed. 
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