10 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The Biomedical Resource Ontology (BRO) to enable resource discovery in clinical and translational research

    Get PDF
    AbstractThe biomedical research community relies on a diverse set of resources, both within their own institutions and at other research centers. In addition, an increasing number of shared electronic resources have been developed. Without effective means to locate and query these resources, it is challenging, if not impossible, for investigators to be aware of the myriad resources available, or to effectively perform resource discovery when the need arises. In this paper, we describe the development and use of the Biomedical Resource Ontology (BRO) to enable semantic annotation and discovery of biomedical resources. We also describe the Resource Discovery System (RDS) which is a federated, inter-institutional pilot project that uses the BRO to facilitate resource discovery on the Internet. Through the RDS framework and its associated Biositemaps infrastructure, the BRO facilitates semantic search and discovery of biomedical resources, breaking down barriers and streamlining scientific research that will improve human health

    Comparison of two standard chemotherapy regimens for good-prognosis germ cell tumors: Updated analysis of a randomized trial

    No full text
    The Australian and New Zealand Germ Cell Trials Group conducted a multicenter randomized phase III trial in men with good-prognosis germ cell tumors of two standard chemotherapy regimens that contained bleomycin, etoposide, and cisplatin but differed in the scheduling and total dose of cisplatin, the total dose of bleomycin, and the scheduling and dose intensity of etoposide. The trial was stopped early at a median follow-up of 33 months after a planned interim analysis found a survival benefit for the more dose-intense regimen. The aim of this analysis was to determine if this survival benefit was maintained with long-term follow-up
    corecore