345 research outputs found

    Cost–utility analysis of imatinib mesilate for the treatment of advanced stage chronic myeloid leukaemia

    Get PDF
    Imatinib mesilate (Glivec®, Novartis Pharmaceuticals) is a novel therapy for the treatment of chronic myeloid leukaemia (CML). We evaluated the cost-effectiveness of imatinib (600 mg daily) when used for the treatment of patients in advanced stages of CML (accelerated phase and blast crisis) against conventional therapies of combination chemotherapy (DAT) and palliative care in hospital or at home. A Markov model simulated the transitions of hypothetical patient cohorts and outcomes were modelled for 5 years from the start of treatment. Costs were estimated from the perspective of the UK National Health Service. Over 5 years, a patient in accelerated phase will, on average, accrue an additional 2.09 QALYs with imatinib compared to conventional therapies, while patients in blast crisis will accrue an additional 0.58 quality-adjusted life-years (QALYs) with imatinib compared to conventional therapies. The costs per additional QALY gained from treatment with imatinib compared with conventional therapies were £29 344 (accelerated phase) and £42 239 (blast crisis). The results were particularly sensitive to the price of imatinib, improvements in quality of life, and the duration of haematological responses. We conclude that treatment of CML with imatinib confers considerably greater survival and quality of life than conventional treatments but at a cost

    Enhanced stochastic optimization algorithm for finding effective multi-target therapeutics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For treating a complex disease such as cancer, we need effective means to control the biological network that underlies the disease. However, biological networks are typically robust to external perturbations, making it difficult to beneficially alter the network dynamics by controlling a single target. In fact, multi-target therapeutics is often more effective compared to monotherapies, and combinatory drugs are commonly used these days for treating various diseases. A practical challenge in combination therapy is that the number of possible drug combinations increases exponentially, which makes the prediction of the optimal drug combination a difficult combinatorial optimization problem. Recently, a stochastic optimization algorithm called the Gur Game algorithm was proposed for drug optimization, which was shown to be very efficient in finding potent drug combinations.</p> <p>Results</p> <p>In this paper, we propose a novel stochastic optimization algorithm that can be used for effective optimization of combinatory drugs. The proposed algorithm analyzes how the concentration change of a specific drug affects the overall drug response, thereby making an informed guess on how the concentration should be updated to improve the drug response. We evaluated the performance of the proposed algorithm based on various drug response functions, and compared it with the Gur Game algorithm.</p> <p>Conclusions</p> <p>Numerical experiments clearly show that the proposed algorithm significantly outperforms the original Gur Game algorithm, in terms of reliability and efficiency. This enhanced optimization algorithm can provide an effective framework for identifying potent drug combinations that lead to optimal drug response.</p

    The novel mTOR inhibitor RAD001 (Everolimus) induces antiproliferative effects in human pancreatic neuroendocrine tumor cells

    Get PDF
    Background/Aim: Tumors exhibiting constitutively activated PI(3) K/Akt/mTOR signaling are hypersensitive to mTOR inhibitors such as RAD001 (everolimus) which is presently being investigated in clinical phase II trials in various tumor entities, including neuroendocrine tumors (NETs). However, no preclinical data about the effects of RAD001 on NET cells have been published. In this study, we aimed to evaluate the effects of RAD001 on BON cells, a human pancreatic NET cell line that exhibits constitutively activated PI(3) K/Akt/mTOR signaling. Methods: BON cells were treated with different concentrations of RAD001 to analyze its effect on cell growth using proliferation assays. Apoptosis was examined by Western blot analysis of caspase-3/PARP cleavage and by FACS analysis of DNA fragmentation. Results: RAD001 potently inhibited BON cell growth in a dose-dependent manner which was dependent on the serum concentration in the medium. RAD001-induced growth inhibition involved G0/G1-phase arrest as well as induction of apoptosis. Conclusion: In summary, our data demonstrate antiproliferative and apoptotic effects of RAD001 in NET cells in vitro supporting its clinical use in current phase II trials in NET patients. Copyright (c) 2007 S. Karger AG, Basel

    Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate

    Get PDF
    Chronic myeloid leukemia (CML) is characterized by the presence of a constitutively active Abl kinase, which is the product of a chimeric BCR-ABL gene, caused by the genetic translocation known as the Philadelphia chromosome. Imatinib, a selective inhibitor of the Bcr-Abl tyrosine kinase, has significantly improved the clinical outcome of patients with CML. However, subsets of patients lose their response to treatment through the emergence of imatinib-resistant cells, and imatinib treatment is less durable for patients with late stage CML. Although alternative Bcr-Abl tyrosine kinase inhibitors have been developed to overcome drug resistance, a cocktail therapy of different kinase inhibitors and additional chemotherapeutics may be needed for complete remission of CML in some cases. Chlorambucil has been used for treatment of B cell chronic lymphocytic leukemia, non-Hodgkin's and Hodgkin's disease. Here we report that a DNA sequence-specific pyrrole-imidazole polyamide-chlorambucil conjugate, 1R-Chl, causes growth arrest of cells harboring both unmutated BCR-ABL and three imatinib resistant strains. 1R-Chl also displays selective toxicities against activated lymphocytes and a high dose tolerance in a murine model

    Eradication of chronic myeloid leukemia stem cells: a novel mathematical model predicts no therapeutic benefit of adding G-CSF to imatinib

    Get PDF
    Imatinib mesylate induces complete cytogenetic responses in patients with chronic myeloid leukemia (CML), yet many patients have detectable BCR-ABL transcripts in peripheral blood even after prolonged therapy. Bone marrow studies have shown that this residual disease resides within the stem cell compartment. Quiescence of leukemic stem cells has been suggested as a mechanism conferring insensitivity to imatinib, and exposure to the Granulocyte-Colony Stimulating Factor (G-CSF), together with imatinib, has led to a significant reduction in leukemic stem cells in vitro. In this paper, we design a novel mathematical model of stem cell quiescence to investigate the treatment response to imatinib and G-CSF. We find that the addition of G-CSF to an imatinib treatment protocol leads to observable effects only if the majority of leukemic stem cells are quiescent; otherwise it does not modulate the leukemic cell burden. The latter scenario is in agreement with clinical findings in a pilot study administering imatinib continuously or intermittently, with or without G-CSF (GIMI trial). Furthermore, our model predicts that the addition of G-CSF leads to a higher risk of resistance since it increases the production of cycling leukemic stem cells. Although the pilot study did not include enough patients to draw any conclusion with statistical significance, there were more cases of progression in the experimental arms as compared to continuous imatinib. Our results suggest that the additional use of G-CSF may be detrimental to patients in the clinic

    Tumor copy number alteration burden is a pan-cancer prognostic factor associated with recurrence and death

    Get PDF
    Prostate Cancer Foundation, American Cancer Society (RSG-15-067-01-TBG), Prostate Cancer Foundation, National Cancer Institute (R01 CA204749), Howard Hughes Medical Institute, National Institutes of Health (CA193837),(CA092629), (CA155169), (CA008748)

    Is there a cloud in the silver lining for imatinib?

    Get PDF
    Imatinib mesylate (Gleevec&#174; or Glivec&#174;), a small molecule tyrosine kinase inhibitor for the treatment of chronic myeloid leukaemia, has been said to herald the dawn of a new er-a of rationally designed, molecularly targeted oncotherapy. Lurking on the same new horizon, however, is the age-old spectre of drug resistance. This review sets the intoxicating clinical perspective against the more sobering laboratory evidence of such divergent mechanisms of imatinib resistance as gene amplification and stem cell quiescence. Polychemotherapy has already been considered to combat resistance, but a more innovative, as yet unformulated, approach may be advocated
    corecore