15 research outputs found

    Impact of cold on grapevine carbon metabolism and floral development

    No full text
    Au vignoble, des nuits froides peuvent se produire pendant la floraison et en particulier au moment de la mĂ©iose ovulaire dans les fleurs. La vigne est particuliĂšrement vulnĂ©rable puisque la mĂ©iose ovulaire se produit lors de la transition du mĂ©tabolisme de la plante d'un Ă©tat hĂ©tĂ©rotrophe Ă  un Ă©tat autotrophe. Bien que la feuille soit l'organe photosynthĂ©tique principal, la jeune inflorescence de vigne possĂšde un statut particulier et participe activement Ă  l'effort reproducteur en exportant la majoritĂ© du carbone qu'elle assimile, permettant ainsi le dĂ©veloppement des feuilles. Par consĂ©quent, le mĂ©tabolisme carbonĂ© de l'inflorescence lors du dĂ©veloppement reproducteur peut ĂȘtre impliquĂ© dans le futur rendement. Chez la vigne, le phĂ©nomĂšne de coulure, propre Ă  chaque cĂ©page, peut engendrer des pertes de rendement importantes lorsque la plante est exposĂ©e Ă  un stress. Le Pinot noir (PN) est considĂ©rĂ© comme un cĂ©page relativement « rĂ©sistant » Ă  la coulure alors que le taux d'abscission chez le Gewurztraminer (GW) augmente considĂ©rablement lors de conditions climatiques dĂ©favorables. Chez le PN, l'inflorescence effectue une photosynthĂšse infĂ©rieure et une respiration de nuit supĂ©rieure Ă  celle de la feuille. L'activitĂ© et la rĂ©gulation des deux photosystĂšmes sont trĂšs diffĂ©rentes entre ces deux organes lors des premiers stades de dĂ©veloppement et les activitĂ©s des deux photosystĂšmes sont supĂ©rieures au niveau de l'inflorescence. NĂ©anmoins, la protection de la chaĂźne photosynthĂ©tique contre l'excĂšs d'Ă©nergie est plus efficace dans la feuille. Contrairement Ă  la feuille, l'activitĂ© photosynthĂ©tique de l'inflorescence Ă©volue au cours de son dĂ©veloppement. En effet, l'activitĂ© de la chaĂźne photosynthĂ©tique ainsi que la photosynthĂšse nette diminuent progressivement au cours de la floraison et le flux cyclique des Ă©lectrons se met en place pour ĂȘtre finalement supĂ©rieur Ă  celui de la feuille. L'activation de ce flux peut alors permettre une synthĂšse accrue d'ATP, une protection de la chaĂźne photosynthĂ©tique contre les dommages provoquĂ©s par un excĂšs d'Ă©nergie ou encore la rĂ©paration des photosystĂšmes. Lorsque la nuit froide survient lors de la mĂ©iose ovulaire, le mĂ©tabolisme carbonĂ© de l'inflorescence de PN est diffĂ©remment modifiĂ© selon l'intensitĂ© du stress. Ainsi, aprĂšs une nuit Ă  4°C, la modification de l'activitĂ© photosynthĂ©tique de l'inflorescence est due Ă  des limitations de nature non-stomatique alors qu'aprĂšs une nuit Ă  0°C, cette modification est due Ă  des limitations de nature stomatique. Une nuit Ă  -3°C altĂšre profondĂ©ment l'activitĂ© photosynthĂ©tique de l'inflorescence. Ces nuits froides induisent Ă©galement une accumulation de glucides. Lors du dĂ©veloppement floral en conditions optimales, le PN et le GW prĂ©sentent une activitĂ© photosynthĂ©tique et un mĂ©tabolisme carbonĂ© diffĂ©rents. La rĂ©gulation des flux linĂ©aire et cyclique des Ă©lectrons est Ă©galement diffĂ©rente. Ce dernier semble avoir une fonction diffĂ©rente chez ces deux cĂ©pages avec notamment une possible implication dans la rĂ©paration du PSII et/ou dans une synthĂšse d'ATP accrue Ă  la fin du processus de floraison chez le PN. La chaĂźne photosynthĂ©tique du GW semble mieux protĂ©gĂ©e ce qui peut expliquer le rendement supĂ©rieur de ce cĂ©page en conditions optimales. NĂ©anmoins, l'exposition Ă  une nuit froide entraine des modifications diffĂ©rentes de l'activitĂ© de l'inflorescence chez ces cĂ©pages avec une perturbation plus importante chez le GW. En effet, chez ce cĂ©page, seule la photosynthĂšse nette est perturbĂ©e suite Ă  la nuit froide alors que chez le PN, les processus de photosynthĂšse et de respiration sont modifiĂ©s. L'activitĂ© de la chaĂźne photosynthĂ©tique ainsi que l'activitĂ© mĂ©tabolique de l'inflorescence de GW est Ă©galement davantage affectĂ©e. De maniĂšre intĂ©ressante, nos rĂ©sultats suggĂšrent que ces diffĂ©rentes perturbations de l'activitĂ© de l'inflorescence sont dues Ă  des rĂ©gulations diffĂ©rentes.In the vineyard, cold night can occur during flowering and particularly at time of female meiosis in flowers. In grapevine, stress vulnerability is enhanced because female meiosis occurs when the whole plant physiology is switching its carbon nutrition from mobilization of wood reserves to photosynthesis in the leaves. Nevertheless, although leaf is the major photosynthetic organ, in grapevine, the young inflorescence has a particular status and takes part in the reproductive effort by exporting the majority of assimilated carbon, allowing in particular the leaves development. Consequently, the inflorescence metabolism during this phase can ultimately determines yield. In grapevine, coulure phenomenon, differing according to the cultivar, can generate important yield losses when a stress occurs. Pinot noir (PN) is considered as a cultivar relatively “resistant” to coulure phenomenon whereas Gewurztraminer (GW) abscission rate considerably increases under environmental stress.In PN, inflorescence performs a lower photosynthesis and a higher dark respiration than leaves. Functioning and regulation of PSI and PSII are very different between inflorescence and leaf during the first developmental stages and activities of these photosystems are higher in the inflorescence. Nevertheless, the photosynthetic chain against excess energy is more efficient in the leaf. Contrary to the leaf, the inflorescence photosynthetic activity evolves during the floral development. Indeed, photosynthetic chain activity and net photosynthesis progressively decrease and the cyclic electron flow appears and is higher than in leaf. This activation could provide ATP, protection against photodamage or repair of the photosystems.When cold night occurs at the female meiosis stage, carbohydrate metabolism of the PN inflorescence is differently modified according to the intensity of the cold stress. At 4°C, photosynthesis in the inflorescence is impaired through non-stomatal limitations, whereas at 0°C it is affected through stomatal limitations. A freezing night (-3°C) severely deregulates photosynthesis in the inflorescence. Cold nights also induce accumulation of sugars.Comparing PN and GW, different photosynthetic activity and carbohydrate metabolism have been showed during the floral development under optimal conditions. Regulations of the linear and cyclic electron flow are also different and the cyclic electron flow seems to have a different aim with particularly an implication in the recovery of PSII and ATP synthesis at the end of the flowering process in PN. GW could have higher protection of the photosynthetic chain and consequently gets a higher yield under optimal conditions. Nevertheless, chilling night impacts differently the activity of the inflorescences of both cultivars with higher modification in GW inflorescence. Indeed, in this cultivar, only the net photosynthesis is altered whereas in PN, both net photosynthesis and respiration processes are modified. The photosynthetic chain activity and metabolical activity of the inflorescence are also more affected by the cold night in GW. Interestingly, our results suggest that the different fluctuation of the inflorescence activities as response to the chilled night is due to different regulations

    Adaptation of grapevine flowers to cold involves different mechanisms depending on stress intensity.

    Get PDF
    Grapevine flower development and fruit set are influenced by cold nights in the vineyard. To investigate the impact of cold stress on carbon metabolism in the inflorescence, we exposed the inflorescences of fruiting cuttings to chilling and freezing temperatures overnight and measured fluctuations in photosynthesis and sugar content. Whatever the temperature, after the stress treatment photosynthesis was modified in the inflorescence, but the nature of the alteration depended on the intensity of the cold stress. At 4°C, photosynthesis in the inflorescence was impaired through non-stomatal limitations, whereas at 0°C it was affected through stomatal limitations. A freezing night (-3°C) severely deregulated photosynthesis in the inflorescence, acting primarily on photosystem II. Cold nights also induced accumulation of sugars. Soluble carbohydrates increased in inflorescences exposed to -3°C, 0°C and 4°C, but starch accumulated only in inflorescences of plants treated at 0 and -3°C. These results suggest that inflorescences are able to cope with cold temperatures by adapting their carbohydrate metabolism using mechanisms that are differentially induced according to stress intensity

    Results of two-way ANOVA of the impact of night temperature on chlorophyll fluorescence parameters.

    No full text
    <p>Significant results at P≀0.05 (*), P≀0.01 (**), P≀0.001 (***) and not significant (ns), respectively.</p

    Results of two-way ANOVA of the impact of night temperature on gas exchange parameters.

    No full text
    <p>Significant results at P≀0.05 (*), P≀0.01 (**), P≀0.001 (***) and not significant (ns), respectively.</p

    Results of two-way ANOVA of the impact of night temperature on carbohydrate content.

    No full text
    <p>Significant results at P≀0.05 (*), P≀0.01 (**), P≀0.001 (***) and not significant (ns), respectively.</p
    corecore