26 research outputs found

    Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness

    Get PDF
    Aging elicits numerous effects that impact both musculoskeletal structure and walking function. Tendon stiffness (kT) and push-off propulsive force (FP) both impact the metabolic cost of walking and are diminished by age, yet their interaction has not been studied. We combined experimental and computational approaches to investigate whether age-related changes in function (adopting smaller FP) may be adopted to mitigate the metabolic consequences arising from changes in structure (reduced kT). We recruited 12 young adults and asked them to walk on a force-sensing treadmill while prompting them to change FP (±20% & ±40% of typical) using targeted biofeedback. In models driven by experimental data from each of those conditions, we altered the kT of personalized musculoskeletal models across a physiological range (2–8% strain) and simulated individual-muscle metabolic costs for each kT and FP combination. We found that kT and FP independently affect walking metabolic cost, increasing with higher kT or as participants deviated from their typical FP. Our results show no evidence for an interaction between kT and FP in younger adults walking at fixed speeds. We also reveal complex individual muscle responses to the kT and FP landscape. For example, although total metabolic cost increased by 5% on average with combined reductions in kT and FP, the triceps surae muscles experienced a 7% local cost reduction on average. Our simulations suggest that reducing FP during walking would not mitigate the metabolic consequences of lower kT. Wearable devices and rehabilitative strategies can focus on either kT or FP to reduce age-related increases in walking metabolic cost

    The effects of plantarflexor weakness and reduced tendon stiffness with aging on gait stability

    Get PDF
    Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle’s proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults–the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity

    Safety and efficacy of vanzacaftor–tezacaftor–deutivacaftor in adults with cystic fibrosis: randomised, double-blind, controlled, phase 2 trials

    Get PDF
    Background Elexacaftor–tezacaftor–ivacaftor has been shown to be safe and efficacious in people with cystic fibrosis and at least one F508del allele. Our aim was to identify a novel cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination capable of further increasing CFTR-mediated chloride transport, with the potential for once-daily dosing. Methods We conducted two phase 2 clinical trials to assess the safety and efficacy of a once-daily combination of vanzacaftor–tezacaftor–deutivacaftor in participants with cystic fibrosis who were aged 18 years or older. A phase 2 randomised, double-blind, active-controlled study (VX18-561-101; April 17, 2019, to Aug 20, 2020) was carried out to compare deutivacaftor monotherapy with ivacaftor monotherapy in participants with CFTR gating mutations, following a 4-week ivacaftor monotherapy run-in period. Participants were randomly assigned to receive either ivacaftor 150 mg every 12 h, deutivacaftor 25 mg once daily, deutivacaftor 50 mg once daily, deutivacaftor 150 mg once daily, or deutivacaftor 250 mg once daily in a 1:1:2:2:2 ratio. The primary endpoint was absolute change in ppFEV1 from baseline at week 12. A phase 2 randomised, double-blind, controlled, proof-of-concept study of vanzacaftor–tezacaftor–deutivacaftor (VX18-121-101; April 30, 2019, to Dec 10, 2019) was conducted in participants with cystic fibrosis and heterozygous for F508del and a minimal function mutation (F/MF genotypes) or homozygous for F508del (F/F genotype). Participants with F/MF genotypes were randomly assigned 1:2:2:1 to receive either 5 mg, 10 mg, or 20 mg of vanzacaftor in combination with tezacaftor–deutivacaftor or a triple placebo for 4 weeks, and participants with the F/F genotype were randomly assigned 2:1 to receive either vanzacaftor (20 mg)–tezacaftor–deutivacaftor or tezacaftor–ivacaftor active control for 4 weeks, following a 4-week tezacaftor–ivacaftor run-in period. Primary endpoints for part 1 and part 2 were safety and tolerability and absolute change in ppFEV1 from baseline to day 29. Secondary efficacy endpoints were absolute change from baseline at day 29 in sweat chloride concentrations and Cystic Fibrosis Questionnaire-Revised (CFQ-R) respiratory domain score. These clinical trials are registered with ClinicalTrials.gov, NCT03911713 and NCT03912233, and are complete. Findings In study VX18-561-101, participants treated with deutivacaftor 150 mg once daily (n=23) or deutivacaftor 250 mg once daily (n=24) had mean absolute changes in ppFEV1 of 3·1 percentage points (95% CI –0·8 to 7·0) and 2·7 percentage points (–1·0 to 6·5) from baseline at week 12, respectively, versus –0·8 percentage points (–6·2 to 4·7) with ivacaftor 150 mg every 12 h (n=11); the deutivacaftor safety profile was consistent with the established safety profile of ivacaftor 150 mg every 12 h. In study VX18-121-101, participants with F/MF genotypes treated with vanzacaftor (5 mg)–tezacaftor–deutivacaftor (n=9), vanzacaftor (10 mg)–tezacaftor–deutivacaftor (n=19), vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=20), and placebo (n=10) had mean changes relative to baseline at day 29 in ppFEV1 of 4·6 percentage points (−1·3 to 10·6), 14·2 percentage points (10·0 to 18·4), 9·8 percentage points (5·7 to 13·8), and 1·9 percentage points (−4·1 to 8·0), respectively, in sweat chloride concentration of −42·8 mmol/L (–51·7 to –34·0), −45·8 mmol/L (95% CI –51·9 to –39·7), −49·5 mmol/L (–55·9 to –43·1), and 2·3 mmol/L (−7·0 to 11·6), respectively, and in CFQ-R respiratory domain score of 17·6 points (3·5 to 31·6), 21·2 points (11·9 to 30·6), 29·8 points (21·0 to 38·7), and 3·3 points (−10·1 to 16·6), respectively. Participants with the F/F genotype treated with vanzacaftor (20 mg)–tezacaftor–deutivacaftor (n=18) and tezacaftor–ivacaftor (n=10) had mean changes relative to baseline (taking tezacaftor–ivacaftor) at day 29 in ppFEV1 of 15·9 percentage points (11·3 to 20·6) and −0·1 percentage points (−6·4 to 6·1), respectively, in sweat chloride concentration of −45·5 mmol/L (−49·7 to −41·3) and −2·6 mmol/L (−8·2 to 3·1), respectively, and in CFQ-R respiratory domain score of 19·4 points (95% CI 10·5 to 28·3) and −5·0 points (−16·9 to 7·0), respectively. The most common adverse events overall were cough, increased sputum, and headache. One participant in the vanzacaftor–tezacaftor–deutivacaftor group had a serious adverse event of infective pulmonary exacerbation and another participant had a serious rash event that led to treatment discontinuation. For most participants, adverse events were mild or moderate in severity. Interpretation Once-daily dosing with vanzacaftor–tezacaftor–deutivacaftor was safe and well tolerated and improved lung function, respiratory symptoms, and CFTR function. These results support the continued investigation of vanzacaftor–tezacaftor–deutivacaftor in phase 3 clinical trials compared with elexacaftor–tezacaftor–ivacaftor. Funding Vertex Pharmaceuticals

    PND46 Longitudinal Assessment of Health-Related Quality of Life in an Observational Cohort of Patients With Cystic Fibrosis

    Get PDF
    corecore